2020版《微点教程》高考人教A版文科数学一轮复习文档:第八章 第三节 圆 的 方 程 .docx
《2020版《微点教程》高考人教A版文科数学一轮复习文档:第八章 第三节 圆 的 方 程 .docx》由会员分享,可在线阅读,更多相关《2020版《微点教程》高考人教A版文科数学一轮复习文档:第八章 第三节 圆 的 方 程 .docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三节圆 的 方 程2019考纲考题考情1圆的定义(1)在平面内,到定点的距离等于定长的点的轨迹叫圆。(2)确定一个圆最基本的要素是圆心和半径。2圆的标准方程(xa)2(yb)2r2(r0),其中(a,b)为圆心坐标,r为半径。3圆的一般方程x2y2DxEyF0表示圆的充要条件是D2E24F0,其中圆心为,半径r。4点与圆的位置关系点和圆的位置关系有三种。圆的标准方程(xa)2(yb)2r2,点M(x0,y0),(1)点在圆上:(x0a)2(y0b)2r2。(2)点在圆外:(x0a)2(y0b)2r2。(3)点在圆内:(x0a)2(y0b)2r2。1圆心在坐标原点半径为r的圆的方程为x2y2r
2、2。2以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(xx1)(xx2)(yy1)(yy2)0。3二元二次方程表示圆的条件对于方程x2y2DxEyF0表示圆时易忽视D2E24F0这一条件。 一、走进教材1(必修2P124A组T1改编)圆x2y24x6y0的圆心坐标是()A(2,3) B(2,3)C(2,3) D(2,3)解析圆的方程可化为(x2)2(y3)213,所以圆心坐标是(2,3)。故选D。答案D2(必修2P120例3改编)过点A(1,1),B(1,1),且圆心在直线xy20上的圆的方程是()A(x3)2(y1)24B(x3)2(y1)24C(x1)2(y1)24D(x1)2
3、(y1)24解析设圆心C的坐标为(a,b),半径为r,因为圆心C在直线xy20上,所以b2a。因为|CA|2|CB|2,所以(a1)2(2a1)2(a1)2(2a1)2。所以a1,b1。所以r2。所以方程为(x1)2(y1)24。故选C。解析:因为A(1,1),B(1,1),所以AB的中垂线方程为yx。由得所以圆心坐标为(1,1),r2。则圆的方程为(x1)2(y1)24。答案C二、走近高考3(2016全国卷)圆x2y22x8y130的圆心到直线axy10的距离为1,则a()A BC D2解析由题意可知,圆心为(1,4),所以圆心到直线的距离d1,解得a。故选A。答案A4(2018天津高考)在
4、平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为_。解析设圆的方程为x2y2DxEyF0(D2E24F0),则解得D2,E0,F0,即圆的方程为x2y22x0。解析:记A(0,0),B(2,0),C(1,1),连接AB,由圆过点A(0,0),B(2,0),知AB的垂直平分线x1必过圆心。连接BC,又圆过点C(1,1),BC的中点为,BC所在直线的斜率kBC1,所以BC的垂直平分线为直线yx1,联立,得得圆心的坐标为(1,0),半径为1,故圆的方程为(x1)2y21,即x2y22x0。答案x2y22x0三、走出误区微提醒:忽视表示圆的充要条件D2E24F0;错用点与圆的位
5、置关系判定;忽视圆的方程中变量的取值范围。5若方程x2y2mx2y30表示圆,则m的取值范围是()A(,)(,)B(,2)(2,)C(,)(,)D(,2)(2,)解析将x2y2mx2y30化为圆的标准方程得2(y1)22。由其表示圆可得20,解得m2。答案B6若点(1,1)在圆(xa)2(ya)24的内部,则实数a的取值范围是()A1a1 B0a1Ca1或a1 Da4解析因为点(1,1)在圆内,所以(1a)2(1a)24,即1a1。故选A。答案A7已知实数x,y满足(x2)2y24,则3x24y2的最大值为_。解析由(x2)2y24,得y24xx20,得0x4,所以3x24y23x24(4xx
6、2)x216x(x8)264(0x4),所以当x4时,3x24y2取得最大值48。答案48考点一 圆的方程【例1】(1)过点A(4,1)的圆C与直线xy10相切于点B(2,1),则圆C的方程为_。(2)已知圆C经过P(2,4),Q(3,1)两点,且在x轴上截得的弦长等于6,则圆C的方程为_。解析(1)由已知kAB0,所以AB的中垂线方程为x3。过B点且垂直于直线xy10的直线方程为y1(x2),即xy30,联立,解得所以圆心坐标为(3,0),半径r,所以圆C的方程为(x3)2y22。解析:设圆的方程为(xa)2(yb)2r2(r0),因为点A(4,1),B(2,1)在圆上,故又因为1,解得a3
7、,b0,r,故所求圆的方程为(x3)2y22。(2)设圆的方程为x2y2DxEyF0(D2E24F0),将P,Q两点的坐标分别代入得又令y0,得x2DxF0。设x1,x2是方程的两根,由|x1x2|6,得D24F36,联立,解得D2,E4,F8,或D6,E8,F0。故所求圆的方程为x2y22x4y80或x2y26x8y0。答案(1)(x3)2y22(2)x2y22x4y80或x2y26x8y0求圆的方程时,应根据条件选用合适的圆的方程。一般来说,求圆的方程有两种方法:(1)几何法:通过研究圆的性质进而求出圆的基本量。确定圆的方程时,常用到的圆的三个性质:圆心在过切点且垂直切线的直线上;圆心在任
8、一弦的中垂线上;两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法:即设出圆的方程,用待定系数法求解。 【变式训练】(1)(2019珠海联考)已知圆C与直线xy0及xy40都相切,圆心在直线xy0上,则圆C的标准方程为()A(x1)2(y1)22B(x1)2(y1)22C(x1)2(y1)22D(x1)2(y1)22(2)(2019河南豫西五校联考)在平面直角坐标系xOy中,以点(0,1)为圆心且与直线xby2b10相切的所有圆中,半径最大的圆的标准方程为()Ax2(y1)24Bx2(y1)22Cx2(y1)28Dx2(y1)216解析(1)由题意设圆心坐标为(a,a),则有即|a|a2|
9、,解得a1。故圆心坐标为(1,1),半径r,所以圆C的标准方程为(x1)2(y1)22。故选B。(2)直线xby2b10过定点P(1,2),如图。所以圆与直线xby2b10相切于点P时,以点(0,1)为圆心的圆的半径最大,此时半径r为,此时圆的标准方程为x2(y1)22。故选B。答案(1)B(2)B考点二 与圆有关的轨迹问题【例2】已知圆x2y24上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点。(1)求线段AP中点的轨迹方程;(2)若PBQ90,求线段PQ中点的轨迹方程。解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x2,2y)。因为P点在圆x2y24
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微点教程 2020版微点教程高考人教A版文科数学一轮复习文档:第八章 第三节圆 2020 教程 高考 文科 数学 一轮 复习 文档 第八 三节
限制150内