《高中生物必背的知识点 .docx》由会员分享,可在线阅读,更多相关《高中生物必背的知识点 .docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品名师归纳总结专题一生命的物质基础和基本单位1. 组成生物体的化学元素最基本的元素是C,基本元素有C、H 、O 、N ,主要元素有C 、H 、O 、N 、P、 S。 P 是核酸、磷脂、 NADP+ 、ATP 、生物膜等的组成成分,参加很多代谢过程。血液中的Ca2+ 含量太低,就会显现抽搐,假设骨中缺少碳酸钙,会引起骨质疏松。K+对神经兴奋的传导和肌 肉收缩有重要作用,当血钾含量过低时,心肌的自动节律反常,并导致心律失常。K+与光合作用中糖类的合成、运输有关。2. .水自由水和结合水比例会影响新陈代谢,自由水比例上升,生物体的新陈代谢旺盛,生长快速。相反,当自由水向结合水转化时,新陈代谢就缓慢
2、。亲水性物质蛋白质、淀粉、纤维素的吸水性依次递减,脂肪的亲水力最弱。核糖体蛋白质缩合脱水,叶绿体光合作用产生水,线粒体呼吸作用产生水,高尔基体合成多糖产生水。赤道板和细胞板: 赤道板是指有丝分裂中期染色体着丝点整齐排列的一个平面,是一个虚拟的无形结构。 而细胞板就是在植物细胞有丝分裂末期,在原赤道板的位置上形成的将来要向四周扩 展成新的细胞壁的结构,是有形的,实实在在的,其形成与高尔基体有关。细胞质与细胞质基质:细胞质是指细胞膜以内,细胞核以外的全部原生质,包括细胞质基质和细胞器。 细胞质基质是活细胞进行新陈代谢的主要场所,例如有氧呼吸的第一阶段和无氧呼吸就 是在此进行的。细胞周期的起点在一次
3、分裂终止之时,而非一次分裂开头之时。低等植物细胞由于有中心体,因此有丝分裂是由中心体发出星射线形成纺锤体。中心体在分裂间期完成复制。蛙的红细胞有细胞核,因此可直接通过细胞分裂无丝分裂进行增殖,而哺乳动物成熟的红细胞无核,不能直接通过分裂进行增殖,是由骨髓的造血干细胞分化而来。着丝点的分开并非由纺锤丝的拉力所致,即使无纺锤体结构, 着丝点也能一分为, 使细胞内染色体加倍如多倍体的形成。纺锤丝的作用是牵引着子染色体移向细胞两极。有丝分裂的全过程分为分裂间期和分裂期又分为前期、中期、后期和末期,实际上是一个连续的变化过程。各时期划分的依据主要是细胞核形状的变化。分裂间期:包括复制前期G1 期、复制期
4、 S 期和复制后期 G2 期。 G1 期从细胞前一次分裂终止到DNA合成开头,在此时期,主要进行RNA和各类蛋白质的合成。当细胞开头 进行 DNA的复制,就意味着进入S 期,在此期间, DNA的复制和组蛋白构成染色体的主可编辑资料 - - - 欢迎下载精品名师归纳总结要蛋白质的合成基本完成。接着进入G2 期,同样有活跃的RNA和蛋白质合成,为纺锤丝形成等做预备。G2 期终止后,细胞便进入分裂期。标志前期开头的第一个特点是染色质不断浓缩,实质上是染色质的螺旋化、折叠和包装过程。此时显现纺锤体线状纤维。随着前期的进展,染色质进一步缩短、变粗,已经能够看到每条染色体包含2 条染色单体了。前期末核膜解
5、体、核仁消逝。核膜一解体就意味着进入分裂中期。中期染色体排列于赤道板,染色体、纺锤体非常明显。后期的特点是染色体分成两组子染色体,两组子染色体朝两极移动。后期开头, 几乎全部的姐妹染色单体同时别离。末期是染色体到达两极,直至核膜、核仁重新显现,形成子细胞。核膜、核仁重新出现与细胞板的扩散同步,此时一个细胞分成两个细胞,在时间上很短。 综上所述, 有丝分裂各时期染色体、 DNA的变化可用以下图来表示:联系: 都是生物体重要的生命特点。细胞分裂与分化往往相伴相随,经常显现边分裂边分化的现象。其次, 细胞的分化并不是单个或少数细胞的孤立变化,而必需以细胞增殖生成肯定数量的细胞做基础。专题二新陈代谢1
6、. 对绿色植物新陈代谢全过程的熟悉绿色植物新陈代谢包括四个方面,它们之间的关系是: 根从土壤中吸取水和矿质元素离子。根吸取的水和叶吸取的CO2 是光合作用的原料。矿质养分为光合作用、呼吸作用的酶、ATP 、色素等供应必需的元素,光合作用为呼吸作用供应有机物,呼吸作用为植物除暗反应外的生命活动供应能量, 因而四个代谢过程既相互独立又密不行分。此外, 根吸取必需的矿质元素与光合作用产物可以合成植物体必需的各种化合物,这是植物一切重要生命活动的基础。2. 三大养分物质消化和代谢的终产物三大养分物质消化的最终产物分别是葡萄糖、甘油和脂肪 酸、氨基酸,是在消化道主要是小肠内完成。而三大养分物质代谢主要在
7、细胞内完成,代谢的最终产物都有二氧化碳和水,蛋白质代谢的最终产物仍有尿素。可编辑资料 - - - 欢迎下载精品名师归纳总结由图可知:生命活动的直接能源物质是ATP 。糖类是细胞内的主要能源物质,脂肪是生物体的储能物质, 蛋白质通常不做能源物质。糖类等有机物所含的能量最终来自绿色植物的光合 作用所固定的太阳能,因此, 生物体生命活动的最终能源是太阳能。生物体内的高能化合物除ATP外,在动物和人体骨骼肌中仍含有磷酸肌酸。当人或动物体内由于能量大量消耗而使ATP过分削减时,磷酸肌酸可把能量转移给ADP 形成 ATP 。5.ADP与 ATP 转化发生的场所、生理过程小结+ 表示是, - 表示否专题三生
8、命活动的调剂1. 的心引力与生长素的极性运输生长素的极性运输不是的心引力所致,在太空失重状态下极性运输依旧存在, 因此, 顶端优势不会消逝。 向光性也不会消逝。 但根的向的性和根的背的性会消逝。饲喂法:如用甲状腺激素制剂的饲料喂养蝌蚪或在其生活的水中加入甲状腺激素。摘除法:如摘除小狗的甲状腺。割除移植法:如割除公鸡的睾丸并植入母鸡的卵巢。摘除注射法:如摘除小狗的垂体并注射生长激素。3. 兴奋在神经纤维上的传导兴奋在突触间的传递是单向的,因此沿着反射弧的传递也是单向的,但是兴奋在神经纤维上的传导是双向的。为什么教材中的图显示的传导方向是单向的了?这是由于在动物体内神经元接受刺激的的方通常是神经末
9、端,从而打算了反射弧中兴奋在神经纤维上的传导是单向的。从图中可知: 下丘脑是机体调剂内分泌活动的枢纽。下丘脑对其他腺体的调剂既可以通过分泌 促激素释放激素来影响垂体的分泌活动,而间接的调剂腺体对激素的合成与分泌,如促甲状腺激素释放激素, 促性腺激素释放激素。也可以通过某种神经对腺体进行调剂,如对胰岛和肾上腺的调剂。垂体具有调剂、治理其他内分泌腺的作用,这个作用是通过分泌促激素实现的。直接对人和高等动物的新陈代谢、生长发育和生殖等生理活动起调剂作用的激素、甲状腺激素、 促性腺激素。可编辑资料 - - - 欢迎下载精品名师归纳总结脱水是指人体大量丢失水分和钠盐,引起细胞外液严峻削减的现象。按其严峻
10、程度的不同, 可分为高渗性脱水、低渗性脱水和等渗性脱水。专题四生物的生殖和发育1.植物的精子和卵细胞的形成过程精子的形成过程:1 个小孢子母细胞 4 个小孢子 4 个养分核和4 个生殖核, 其中 4 个生殖核再经过一次有丝分裂,产生8 个精子形成4 个花粉粒。因此,每个花粉粒中的2 个精子是同源的,其基因组成也是一样的。卵细胞的形成过程:1 个大孢子母细胞 4 个大孢子其中 3 个退化,剩下 1 个大孢子 经三次有丝分裂 8 个核形成 8 核胚囊,其中包括 1 个卵细胞和 2 个极核因此,卵细胞和 2 个极核是同源的,其中的染色体都是体细胞的一半, 基因组成也是完全相同的。 由此可见, 植物的
11、精子和卵细胞并非减数分裂直接产生的,与动物的精子和卵细胞的形成过程不同。外胚层:皮肤的表皮及其附属结构包括汗腺、皮脂腺、毛发、指甲等,口腔上皮细胞及唾液腺,神经系统和感觉器官指眼、耳、鼻中胚层:皮肤的真皮,运动系统包括骨骼和肌肉,循环系统包括心脏、血管、血液及淋巴器官、淋巴管和淋巴,内脏器官的外膜包括肠系膜、大网膜,排泄系统,生殖系统。内胚层:消化道上皮、呼吸道上皮以及由此退化而来的器官或结构如肝脏和胰腺,但不包括口腔上皮和鼻腔的鼻黏膜。可编辑资料 - - - 欢迎下载精品名师归纳总结3. 被子植物个体发育不同阶段的养分供应胚在形成过程中, 所需养分由胚柄吸取养分来供应。胚发育成幼苗所需养分由
12、子叶无胚乳种子或胚乳有胚乳种子供应。幼苗经养分生长、生殖生长成为性成熟植物体的过程所需养分均来自自身光合作用。4. 被子植物果实各部分的来源、染色体数目及基因型假设亲本体细胞中染色体数目为2N 说明:胚包括子叶、胚芽、胚根和胚轴四部分,四部分的染色体、基因型均相同。说明: 该方法只适用于二倍体生物。假设是处于分裂后期的细胞,应当看移向同一极的一套染色体中是否存在同源染色体。专题五遗传、变异和进化1.X染色体和 Y染色体也是一对同源染色体虽然二者在形状、大小上都不相同,但它们也是一对同源染色体。2. 遗传性状、遗传信息、遗传密码、反密码子的比较遗传性状:生物表现出来的形状特点和生理特点,其表达者
13、是蛋白质,由遗传信息打算。遗传信息:基因中能掌握生物性状的脱氧核苷酸的排列次序。遗传密码:又称密码子,是指mRNA上能打算一个氨基酸的3 个相邻的碱基。密码子共有64个,而能打算氨基酸的密码子只有61 个,有3 个终子密码子不打算任何一个氨基酸。反密码子: 是指 tRNA的一端的三个相邻的碱基,能专一的与mRNA上的特定的3 个碱基即密码子配对。四者的主要区分是存在的位置不同,功能不同。从分子水平看,生物遗传的实质是基因中脱氧核苷酸的排列次序遗传信息从亲代传递给子代的过程。3 基因别离定律和自由组合定律适用的条件有性生殖的生物的性状遗传,基因别离定律的实质是同源染色体上等位基因的别离,自由组合
14、定律的实质是同源染色体上等位基因在别离的同时,非同源染色体上的非等位基因自由组合,而同源染色体的别离和非同源染色体的自由组合是有性生殖的生物进行减数分裂时特有的行为。真核生物的性状遗传,原核生物或非细胞结构的生物不进行减数分裂,不进行有性生殖。细胞核遗传, 只有细胞核中的基因随染色体的规律性变化而呈规律性变化,细胞质遗传表现出母性遗传的特性,并且后代的性状都不会显现肯定的别离比。只有位于非同源染色体上的两对或多对 基因才按自由组合定律向后代传递,而位于一对同源染色体上的两对或多对基因就是根据连锁与交换定律向后代传递的。4. 人类遗传病的五种遗传方式及特点5. 基因库、基因频率、基因型频率可编辑
15、资料 - - - 欢迎下载精品名师归纳总结基因库:是指一个种群所含的全部基因。每个个体所含的基因只是种群基因库中的一个组成部分。种群越大,基因库也越大,反之,种群越小基因库也就越小。当种群变得很小时,就有可能失去遗传的多样性,从而失去了进化上的优势而逐步被剔除。基因频率:指某种基因在某个种群中显现的比例。假如在种群足够大,没有基因突变, 生存空间和食物都无限的条件下,即没有生存压力, 种群内个体之间的交配又是随机的情形下,种群内的基因频率是不变的。 但这种条件在自然状态下是不存在的,即使在试验室条件下也很难做到。实际情形是由于存在基因突变、基因重组、 自然挑选以及遗传漂变和迁移等因素,种群的基
16、因频率总是在不断变化的。 这种基因频率的变化的方向是由自然挑选打算的。所以生物进化的实质就是 种群基因频率发生变化的过程。基因型频率:是群体中任何一个个体的某一种基因型所占的百分比。1假如生物体由受精卵或合子发育而来,就体细胞中有几个染色体组,就叫几倍体。染色体组数的判定方法可按: 第一, 细胞内相同的染色体 即同源染色体 有几条, 就有几个染色体组。 其次, 在基因型中, 同一种基因显现几次, 就有几个染色体组, 如体细胞中基因型为 AAaaBBBb 的生物为四倍体,而 AaBB 的生物就是二倍体2假如生物是由生殖细胞卵细胞或花粉花药直接发育而来,就不管细胞内有几个染色体组,都叫单倍体。7.
17、 终止子和终止密码,启动子和起始密码终止子和终止密码:终止子位于DNA上,属于基因非编码区下游的核苷酸序列。它特别的碱基排列次序能够阻碍RNA聚合酶的移动, 并使其从 DNA 模板链上脱离下来, 从而使转录工作停止。终止密码位于mRNA上,共有三种:UAA 、 UAG 、UGA ,这三种密码子不能打算任何一种氨基酸,只做一条肽链合成的终止信号。启动子和起始密码:启动子位于DNA上,属于基因非编码区上游的核苷酸序列。启动子上有与 RNA聚合酶结合点。只有在启动子存在时,RNA聚合酶才能精确的识别转录起点,并沿 着 DNA编码区正常的进行转录。起始密码位于mRNA上,只有一种: AUG ,既打算一
18、种氨基酸,同时做肽链合成的启动信号。8. 伴性遗传与二大遗传定律的关系假如是一对等位基因掌握一对相对性状的遗传,就符合别离定律。假如既有性染色体又有常染色体上的基因掌握的两对相对性状的遗传,就遵循自由组合定律。可编辑资料 - - - 欢迎下载精品名师归纳总结专题六生物与环境1. 解读种群增长的“ S”型曲线当种群在一个有限的环境中增长时,随着种群密度的上升,个体间对有限空间、 食物和其他生活条件的种内斗争必将加剧,以该种群为食的捕食者的数量也会增加,这就会使这个种群的诞生率 下降,死亡率增高,从而使种群数量的增长率指在某一时间,某一种群数量条件下的瞬时增长 率,可用 dN /dt 表示下降,当
19、种群数量到达环境所答应的最大容量K 值时,种群数量将停止增长,即此时的增长率为0,有时会在最大值上下保持相对稳固。当种群数量增长到1 2K 值时,曲线有一拐点P,在 P 点种群的增长速率最快,可供应的资源也最多,而又不影响资源的再生。当大于1 2K值时,种群增长的速率将开头下降。因此,在对野生动植物资源的合理 开发和利用方面,当种群数量大于1 2K 值时就可以猎取肯定数量的该生物资源,而且获得的量最大,当过渡猎取导致种群数量小于1 2K值时,种群的增长速率将会减慢,获得的资源量也将削减,而且会影响资源的再生。所以在猎取资源时应留意保证剩余量在1 2K 值以上,这样才会有利于资源的再生和可连续进
20、展。2. 关于生态系统能量流淌的学问归纳能量流淌是生态系统的两大功能之一。能量流淌的起点是从生产者固定太阳能开头的,流经生态系统的总能量是指生产者固定的太阳能的总量。在生态系统中能量的变化是:光能生物体有机物中的化学能热能,而热能是不能重复利用的,所以能量流淌是单向的,不循环的。流入到各级消费者的总能量是指各级消费者所同化的能量,排出的粪便中的能量不计入排便生物所同化的能量中。能量流淌之所以是单向的缘由是: 第一, 食物链中各养分级的次序是不行逆转的, 这是长期自然挑选的结果。 其次, 各养分级的能量大部分以呼吸作用产生的热能形式散失掉, 这些能量是生物无法利用的。能量流淌逐级递减的缘由是:第
21、一,各养分级的生物都因呼吸消耗了大部分能量。其次,各营养级总有一部分生物未被下一养分级利用,如枯枝败叶。生态系统的能量传递效率为10% 20%的含义,是指一个养分级的总能量大约只有10% 20%传递到下一个养分级。3. 碳循环、氮循环、硫循环的比较可编辑资料 - - - 欢迎下载精品名师归纳总结专题七现代生物技术1. 受精作用、原生质体融合、动物细胞融合的比较三者的相同点是:都由两个细胞融合成一个细胞,并且融合而成的这个细胞中的遗传物质都是由原先的两个细胞打算的。 三者的不同点是: 细胞类型不同。受精作用是精子和卵细胞融合为受精卵的过程,精子和卵细胞是有性生殖细胞。而原生质体融合和动物细胞融合
22、中的细胞是体细胞。 细胞来源不同。 用于受精作用的精子和卵细胞是来自同种生物个体。 而原生质体融合和动物细胞融合的细胞一般来自不同的生物个体。 染色体数目变化不同假设体细胞中染色体为 2N ,那么精子和卵细胞中的染色体为 N,受精卵中的染色体为 2N 。而原生质体融合和动物细胞融合是两个体细胞融合成一个细胞,染色体为4N 。融合条件不同。受精作用一般不需要人工方法促进细胞融合。而原生质体融合需要用物理法如离心、 振动、 电刺激等促进融合或化学法如用聚乙二醇诱导融合。而动物细胞融合常用灭活的仙台病毒作为诱导剂促进融合。原生质体融合和动物细胞融合的原理基本相同。植物细胞去壁后就是原生质体,因此原生
23、质体融合这一概念一般用于植物细胞。两者的相同点是:都采纳肯定的方法, 通过转变细胞或植株染色体的数目来转变遗传物质,从而转变生物体的遗传性状,从中选育出符合人们要求的新品种。两者的不同点是: 基本原理不同。多倍体育种的原理是染色体数目变异,植物体细胞杂交的原理是原生质体融合和组织培育。方法不同。 多倍体育种常用的方法是用秋水仙素处理萌发的种子或幼苗,使染色体加倍。 植物体细胞杂交就是通过原生质体融合和组织培育得到杂种植株。染色体来源和数目不同。通过染色体加倍得到的多倍体植株,它的染色体是原先的二倍,且来自同种同一个体。而通过体细胞杂交得可编辑资料 - - - 欢迎下载精品名师归纳总结到的杂种植株,染色体是两个细胞中染色体之和,且一般来自不同种,如“白菜甘蓝”的染色体数是白菜和甘蓝的染色体数之和。4. 植物体细胞杂交和杂交育种的区分植物体细胞杂交克服远源杂交不亲和的障碍,可以培育作物新品种。5. 植物组织培育与动物细胞培育的区分动物细胞工程常用的技术手段有动物细胞培育、动物细胞融合、单克隆抗体、 胚胎移植、核移植等。其中,动物细胞培育技术是其他动物细胞工程技术的基础。可编辑资料 - - - 欢迎下载
限制150内