2019高考数学二轮复习课时跟踪检测十九圆锥曲线中的定点定值存在性问题大题练.doc
《2019高考数学二轮复习课时跟踪检测十九圆锥曲线中的定点定值存在性问题大题练.doc》由会员分享,可在线阅读,更多相关《2019高考数学二轮复习课时跟踪检测十九圆锥曲线中的定点定值存在性问题大题练.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时跟踪检测(十九) 圆锥曲线中的定点、定值、存在性问题(大题练)A卷大题保分练1(2018成都模拟)已知椭圆C:1(ab0)的右焦点F(,0),长半轴长与短半轴长的比值为2.(1)求椭圆C的标准方程;(2)设不经过点B(0,1)的直线l与椭圆C相交于不同的两点M,N,若点B在以线段MN为直径的圆上,证明直线l过定点,并求出该定点的坐标解:(1)由题意得,c,2,a2b2c2,a2,b1,椭圆C的标准方程为y21.(2)证明:当直线l的斜率存在时,设直线l的方程为ykxm(m1),M(x1,y1),N(x2,y2)由消去y可得(4k21)x28kmx4m240.16(4k21m2)0,x1x2
2、,x1x2.点B在以线段MN为直径的圆上,0.(x1,kx1m1)(x2,kx2m1)(k21)x1x2k(m1)(x1x2)(m1)20,(k21)k(m1)(m1)20,整理,得5m22m30,解得m或m1(舍去)直线l的方程为ykx.易知当直线l的斜率不存在时,不符合题意故直线l过定点,且该定点的坐标为.2(2018全国卷)设抛物线C:y24x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,|AB|8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程解:(1)由题意得F(1,0),l的方程为yk(x1)(k0)设A(x1,y1),B(x2,y2),由得k2x2
3、(2k24)xk20.16k2160,故x1x2.所以|AB|AF|BF|(x11)(x21).由题设知8,解得k1或k1(舍去)因此l的方程为yx1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y2(x3),即yx5.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为(x3)2(y2)216或(x11)2(y6)2144.3.(2018贵阳模拟)如图,椭圆C:1(ab0)的左顶点与上顶点分别为A,B,右焦点为F,点P在椭圆C上,且PFx轴,若ABOP,且|AB|2.(1)求椭圆C的方程;(2)已知Q是C上不同于长轴端点的任意一点,在x轴上是否存在一点D,
4、使得直线QA与QD的斜率乘积恒为,若存在,求出点D的坐标,若不存在,说明理由解:(1)由题意得A(a,0),B(0,b),可设P(c,t)(t0),1,得t,即P,由ABOP得,即bc,a2b2c22b2,又|AB|2,a2b212,由得a28,b24,椭圆C的方程为1.(2)假设存在D(m,0),使得直线QA与QD的斜率乘积恒为,设Q(x0,y0)(y00),则1,kQAkQD,A(2,0),(x0m),由得(m2)x02m80,即解得m2,存在点D(2,0),使得kQAkQD.4(2018昆明模拟)已知椭圆C:1(ab0)的焦距为4,P是椭圆C上的点(1)求椭圆C的方程;(2)O为坐标原点
5、,A,B是椭圆C上不关于坐标轴对称的两点,设,证明:直线AB的斜率与OD的斜率的乘积为定值解:(1)由题意知2c4,即c2,则椭圆C的方程为1,因为点P在椭圆C上,所以1,解得a25或a2(舍去),所以椭圆C的方程为y21.(2)设A(x1,y1),B(x2,y2),x1x2且x1x20,由,得D(x1x2,y1y2),所以直线AB的斜率kAB,直线OD的斜率kOD,由得(x1x2)(x1x2)(y1y2)(y1y2)0,即,所以kABkOD.故直线AB的斜率与OD的斜率的乘积为定值.B卷深化提能练1(2018安徽江南十校联考)在平面直角坐标系中,直线xym0不过原点,且与椭圆1有两个不同的公
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 二轮 复习 课时 跟踪 检测 十九 圆锥曲线 中的 定点 存在 问题 大题练
限制150内