复变函数-2-2-精品文档资料整理.ppt
《复变函数-2-2-精品文档资料整理.ppt》由会员分享,可在线阅读,更多相关《复变函数-2-2-精品文档资料整理.ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二节 函数解析的充要条件 一、主要定理二、典型例题三、小结与思考2一、主要定理一、主要定理定理一定理一. , , ),( ),( ),( : )( , ),(),()( xvyuyvxuyxyxvyxuyixzDzfDyxivyxuzf 点满足柯西黎曼方程点满足柯西黎曼方程并且在该并且在该可微可微在点在点与与件是件是可导的充要条可导的充要条内一点内一点在在则则内内定义在区域定义在区域设函数设函数柯西介绍柯西介绍黎曼介绍黎曼介绍3, ( )( , )( , ) : f zu x yiv x yzxyi根据定理一的推导 可得函数在点处的导数公式.1)(yvyuixvixuzf 内解析的充要条件内
2、解析的充要条件函数在区域函数在区域 D. , ),( ),( : ),(),()( 程程并且满足柯西黎曼方并且满足柯西黎曼方内可微内可微在在与与内解析的充要条件是内解析的充要条件是域域在其定义在其定义函数函数定理二定理二DyxvyxuDyxivyxuzf 4解析函数的判定方法解析函数的判定方法: :. )( , )( )1(内是解析的内是解析的在在解析函数的定义断定解析函数的定义断定则可根据则可根据内处处存在内处处存在的导数在区域的导数在区域数数导法则证实复变函导法则证实复变函如果能用求导公式与求如果能用求导公式与求DzfDzf. )( ,R C ) ),( , ( , )( 2)(内解析内解
3、析在在的充要条件可以断定的充要条件可以断定那么根据解析函数那么根据解析函数方程方程并满足并满足可微可微因而因而、连续、连续的各一阶偏导数都存在的各一阶偏导数都存在内内在在中中如果复变函数如果复变函数DzfyxvuDvuivuzf 5二、例题二、例题例例1 判定下列函数在何处可导判定下列函数在何处可导, 在何处解析在何处解析:).Re()3();sin(cos)()2(;)1(zzwyiyezfzwx 解解,)1(zw ,yvxu . 1, 0, 0, 1 yvxvyuxu不满足柯西黎曼方程不满足柯西黎曼方程, . ,处处不解析处处不解析在复平面内处处不可导在复平面内处处不可导故故zw 6)si
4、n(cos)()2(yiyezfx ,sin,cosyevyeuxx ,sin,cosyeyuyexuxx ,cos,sinyeyvyexvxx . , xvyuyvxu 即即四个偏导数四个偏导数均连续均连续 . ,)(处处解析处处解析在复平面内处处可导在复平面内处处可导故故zf( )(cossin )( ).xfzeyiyf z且7)Re()3(zzw ,2xyix ,2xyvxu ., 0,2xyvyxvyuxxu 四个偏导数均连续四个偏导数均连续 , , 0 满足柯西黎曼方程满足柯西黎曼方程时时仅当仅当 yx ,0 )Re(处可导处可导仅在仅在故函数故函数 zzzw .在在复复平平面面内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 精品 文档 资料 整理
限制150内