2020版数学新优化浙江大一轮试题:第七章 不等式、推理与证明 考点规范练34 .docx
《2020版数学新优化浙江大一轮试题:第七章 不等式、推理与证明 考点规范练34 .docx》由会员分享,可在线阅读,更多相关《2020版数学新优化浙江大一轮试题:第七章 不等式、推理与证明 考点规范练34 .docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考点规范练34直接证明与间接证明考点规范练第42页基础巩固组1.用反证法证明命题:“如果a,bN,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为() A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除答案B解析因为命题:“如果a,bN,ab可被5整除,那么a,b中至少有一个能被5整除”的否定是a,b都不能被5整除,所以用反证法证明该命题时假设的内容应为a,b都不能被5整除.故选B.2.设a,b,c均为正实数,则三个数a+1b,b+1c,c+1a()A.都大于2B.都小于2C.至少有一个不大于2D.至少有一个不小于2答案D解析a0,b0
2、,c0,a+1b+b+1c+c+1a=a+1a+b+1b+c+1c6,当且仅当a=b=c=1时,等号成立,故三者不能都小于2,即至少有一个不小于2.3.已知p=ab+cd,q=ma+ncbm+dn(m,n,a,b,c,d均为正数),则p,q的大小关系为()A.pqB.pqC.pqD.不确定答案B解析q=ab+madn+nbcm+cdab+2abcd+cd=ab+cd=p.4.设f(x)是定义在R上的奇函数,且当x0时,f(x)单调递减,若x1+x20,则f(x1)+f(x2)的值()A.恒为负值B.恒等于零C.恒为正值D.无法确定正负答案A解析由f(x)是定义在R上的奇函数,且当x0时,f(x
3、)单调递减,可知f(x)是R上的单调递减函数.由x1+x20,可知x1-x2,即f(x1)f(-x2)=-f(x2),则f(x1)+f(x2)0,故选A.5.在ABC中,sin Asin Ccos Acos C,则ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案C解析由sin Asin C0,即cos (A+C)0,则A+C是锐角,从而B2,故ABC必是钝角三角形.6.已知2+23=223,3+38=338,4+415=4415,若6+at=6at(a,t均为正实数),类比以上等式可推测出a,t的值,则a+t=.答案41解析按题中的等式可推测出a=6,t=a2-1=35
4、,则a+t=6+35=41.7.设a,b,c是不全相等的实数,给出下列判断:(a-b)2+(b-c)2+(c-a)20;ab,ab2+c2解析由余弦定理知cos A=b2+c2-a22bc0,则b2+c2-a2b2+c2.能力提升组9.设a,b是两个实数,给出下列条件:a+b1;a+b=2;a+b2;a2+b22;ab1.其中能推出“a,b中至少有一个大于1”的条件是()A.B.C.D.答案C解析若a=12,b=23,则a+b1,但a1,b2,故推不出;若a=-2,b=-3,则ab1,故推不出;对于,假设a1且b1,则a+b2,与a+b2矛盾,因此假设不成立,故a,b中至少有一个大于1.故选C
5、.10.已知x为正实数,不等式x+1x2,x+4x23,x+27x34,可推广为x+axnn+1,则a的值为()A.2nB.n2C.22(n-1)D.nn答案D解析因为第一个式子中a=11,第二个式子中a=4=22,第三个式子中a=27=33,所以猜想第n个式子中a=nn.故选D.11.已知函数f(x)=12x,a,b是正实数,A=fa+b2,B=f(ab),C=f2aba+b,则A,B,C的大小关系为()A.ABCB.ACBC.BCAD.CBA答案A解析因为a+b2ab2aba+b,又f(x)=12x在R上是减函数,所以fa+b2f(ab)f2aba+b.12.设x,y,z均大于0,则三个数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版数学新优化浙江大一轮试题:第七章 不等式、推理与证明 考点规范练34 2020 数学 优化 浙江 一轮 试题 第七 不等式 推理 证明 考点 规范 34
限制150内