2018-2019版数学新导学笔记选修2-2人教A全国通用版讲义:第二章 推理与证明2.1.1 .docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2018-2019版数学新导学笔记选修2-2人教A全国通用版讲义:第二章 推理与证明2.1.1 .docx》由会员分享,可在线阅读,更多相关《2018-2019版数学新导学笔记选修2-2人教A全国通用版讲义:第二章 推理与证明2.1.1 .docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.1合情推理与演绎推理21.1合情推理学习目标1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用知识点一归纳推理思考(1)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电(2)统计学中,从总体中抽取样本,然后用样本估计总体以上属于什么推理?答案属于归纳推理梳理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)(2)特征:由部分到整体,由个别到一般的推理知识点二类比推理思考科学家对火星进行研究,发现火星与地球有许多类似的特征:(1)火星也是绕太阳
2、公转、绕轴自转的行星;(2)有大气层,在一年中也有季节更替;(3)火星上大部分时间的温度适合地球上某些已知生物的生存,等等由此,科学家猜想:火星上也可能有生命存在他们使用了什么样的推理?答案类比推理梳理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(2)特征:由特殊到特殊的推理知识点三合情推理思考归纳推理与类比推理有何区别与联系?答案区别:归纳推理是由特殊到一般的推理;而类比推理是由个别到个别的推理或是由特殊到特殊的推理联系:在前提为真时,归纳推理与类比推理的结论都可真可假梳理(1)定义:归纳推理和类比推理都是根据已有的事实,
3、经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理通俗地说,合情推理就是合乎情理的推理(2)推理的过程1类比推理得到的结论可作为定理应用()2由个别到一般的推理为归纳推理()3在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适()类型一归纳推理例1(1)观察下列等式:1121,(21)(22)2213,(31)(32)(33)23135,照此规律,第n个等式可为_(2)已知f(x),设f1(x)f(x),fn(x)fn1(fn1(x)(n1,且nN*),则f3(x)的表达式为_,猜想fn(x)(nN*)的表达式为_考点归纳推理的应用题点归纳
4、推理在数对(组)中的应用答案(1)(n1)(n2)(nn)2n13(2n1)(2)解析(1)观察规律可知,左边为n项的积,最小项和最大项依次为(n1),(nn),右边为连续奇数之积乘以2n,则第n个等式为(n1)(n2)(nn)2n13(2n1)(2)f(x),f1(x).又fn(x)fn1(fn1(x),f2(x)f1(f1(x),f3(x)f2(f2(x),f4(x)f3(f3(x),f5(x)f4(f4(x),根据前几项可以猜想fn(x).引申探究在本例(2)中,若把“fn(x)fn1(fn1(x)”改为“fn(x)f(fn1(x)”,其他条件不变,试猜想fn(x) (nN*)的表达式解
5、f(x),f1(x).又fn(x)f(fn1(x),f2(x)f(f1(x),f3(x)f(f2(x),f4(x)f(f3(x).因此,可以猜想fn(x).反思与感悟(1)已知等式或不等式进行归纳推理的方法要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律;要特别注意所给几个等式(或不等式)中结构形成的特征;提炼出等式(或不等式)的综合特点;运用归纳推理得出一般结论(2)数列中的归纳推理:在数列问题中,常常用到归纳推理猜测数列的通项公式或前n项和通过已知条件求出数列的前几项或前n项和;根据数列中的前几项或前n项和与对应序号之间的关系求解;运用归纳推理写出数列的通项公式或前n项和公式
6、跟踪训练1已知数列an的前n项和为Sn,a13,满足Sn62an1(nN*)(1)求a2,a3,a4的值;(2)猜想an的表达式考点归纳推理的应用题点归纳推理在数列中的应用解(1)因为a13,且Sn62an1(nN*),所以S162a2a13,解得a2,又S262a3a1a23,解得a3,又S362a4a1a2a33,解得a4.(2)由(1)知a13,a2,a3,a4,猜想an(nN*)例2有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是()A26 B31 C32 D36考点归纳推理的应用题点归纳推理在图形中的应用答案B解析有菱形纹的正六边形的个
7、数如下表:图案123个数61116由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是65(61)31.故选B.反思与感悟归纳推理在图形中的应用策略跟踪训练2用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A6n2 B8n2C6n2 D8n2考点归纳推理的应用题点归纳推理在图形中的应用答案C解析归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,所以第n个“金鱼”图需要的火
8、柴棒的根数为an8(n1)66n2.类型二类比推理例3设等差数列an的前n项和为Sn,则S4,S8S4,S12S8,S16S12成等差数列,类比以上结论有:设等比数列bn的前n项积为Tn,则T4,_,_,成等比数列考点类比推理的应用题点等差数列与等比数列之间的类比答案解析由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项的和仍成等差数列时,类比等比数列为依次每4项的积成等比数列下面证明该结论的正确性:设等比数列bn的公比为q,首项为b1,则T4bq6,T8bq127bq28,T12bq1211bq66,T16bq1215bq120,bq22,b
9、q38,bq54,即2T4,2,故T4,成等比数列反思与感悟已知等差数列与等比数列有类似的性质,在类比过程中也有一些规律,如下表所示的部分结论(其中d,q分别是公差和公比):等差数列等比数列定义anan1d(n2)anan1q(n2)通项公式ana1(n1)dana1qn1性质若mnpq,则amanapaq若mnpq,则amanapaq跟踪训练3若数列an(nN*)是等差数列,则有数列bn(nN*)也是等差数列;类比上述性质,相应地:若数列cn是等比数列,且cn0,则有数列dn_(nN*)也是等比数列考点类比推理的应用题点等差数列与等比数列之间的类比答案解析数列an(nN*)是等差数列,则有数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018-2019版数学新导学笔记选修2-2人教A全国通用版讲义:第二章 推理与证明2.1.1 2018 2019 数学 新导学 笔记 选修 人教 全国 通用版 讲义 第二 推理 证明 2.1
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-2688585.html
限制150内