2019-2020学年高中数学人教A版必修一学案:1.2.2.1 函数的表示法 .doc
《2019-2020学年高中数学人教A版必修一学案:1.2.2.1 函数的表示法 .doc》由会员分享,可在线阅读,更多相关《2019-2020学年高中数学人教A版必修一学案:1.2.2.1 函数的表示法 .doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.2.2函数的表示法课标要点课标要点学考要求高考要求1.函数的解析法表示bb2.函数的图象法表示bc3.函数的列表法表示aa4.分段函数bb,知识导图学法指导1.函数的三种表示法体现了“式”“表”“图”的不同形态,特别是“式”与“图”的结合,体现了数形结合思想,学习过程中注意把它们相互结合,特别要注意加强“式”与“图”的相互转化,从不同的侧面认识函数的本质2学习分段函数,要结合实例体会概念,还要注意书写规范第1课时函数的表示法,知识点函数的表示法三种表示方法的优缺点比较优点缺点解析法一是简明、全面地概括了变量间的关系;二是可以通过用解析式求出任意一个自变量所对应的函数值不够形象、直观,而且并
2、不是所有的函数都可以用解析式表示列表法不通过计算就可以直接看出与自变量的值相对应的函数值它只能表示自变量取较少的有限值的对应关系图象法直观形象地表示出函数的变化情况,有利于通过图象研究函数的某些性质只能近似地求出自变量所对应的函数值,有时误差较大 小试身手1判断(正确的打“”,错误的打“”)(1)任何一个函数都可以用解析法表示()(2)函数f(x)2x1不能用列表法表示()(3)函数的图象一定是定义区间上一条连续不断的曲线()答案:(1)(2)(3)2购买某种饮料x听,所需钱数为y元,若每听2元,用解析法将y表示成x(x1,2,3,4)的函数为()Ay2xBy2x(xR)Cy2x(x1,2,3
3、,) Dy2x(x1,2,3,4)解析:题中已给出自变量的取值范围,x1,2,3,4,故选D.答案:D3已知函数f(2x1)6x5,则f(x)的解析式是()A3x2 B3x1C3x1 D3x4解析:方法一令2x1t,则x.f(t)653t2.f(x)3x2.方法二f(2x1)3(2x1)2.f(x)3x2.答案:A4已知函数f(x),g(x)分别由下表给出x123f(x)211x123g(x)321则f(g(1)的值为_当g(f(x)2时,x_.解析:由于函数关系是用表格形式给出的,知g(1)3,f(g(1)f(3)1.由于g(2)2,f(x)2,x1.答案:11类型一函数的表示方法例1(1)
4、某学生离家去学校,一开始跑步前进,跑累了再走余下的路程下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是()(2)已知函数f(x)按下表给出,满足ff(x)f(3)的x的值为_.x123f(x)231【解析】(1)由题意可知,一开始速度较快,后来速度变慢,所以开始曲线比较陡峭,后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大,最后距离为0.(2)由表格可知f(3)1,故ff(x)f(3)即为ff(x)1.f(x)1或f(x)2,x3或1.【答案】(1)D(2)3或1(1)由题意找到出发时间与离校距离的关系及变化规律(2)观察表格,先求出f(1)、f(2)、f(3
5、),进而求出f(f(x)的值,再与f(3)比较方法归纳理解函数的表示法应关注三点(1)列表法、图象法、解析法均是函数的表示方法,无论用哪种方式表示函数,都必须满足函数的概念(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义(3)函数的三种表示方法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主跟踪训练1某商场新进了10台彩电,每台售价3 000元,试求售出台数x(x为正整数)与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来解析:(1)列表法:x/台12345678910y/元3 0006 0009 00012 00015 000
6、18 00021 00024 00027 00030 000(2)图象法:如图所示(3)解析法:y3 000x,x1,2,3,10本题中函数的定义域是不连续的,作图时应注意函数图象是一些点,而不是直线另外,函数的解析式应注明定义域类型二求函数的解析式例2根据下列条件,求函数的解析式:(1)已知f,求f(x);(2)f(x)是二次函数,且f(2)3,f(2)7,f(0)3,求f(x)【解析】(1)设t,则x(t0),代入f,得f(t),故f(x)(x0且x1)(2)设f(x)ax2bxc(a0)因为f(2)3,f(2)7,f(0)3.所以解得所以f(x)x2x3.(1)换元法:设t,注意新元的范
7、围(2)待定系数法:设二次函数的一般式f(x)ax2bxc.跟踪训练2(1)已知f(x22)x44x2,则f(x)的解析式为_;(2)已知f(x)是一次函数,且f(f(x)4x1,则f(x)_.解析:(1)因为f(x22)x44x2(x22)24,令tx22(t2),则f(t)t24(t2),所以f(x)x24(x2)(2)因为f(x)是一次函数,设f(x)axb(a0),则f(f(x)f(axb)a(axb)ba2xabb.又因为f(f(x)4x1,所以a2xabb4x1.所以解得或所以f(x)2x或f(x)2x1.答案:(1)f(x)x24(x2)(2)2x或2x1(1)换元法:设x22t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019-2020学年高中数学人教A版必修一学案:1.2.2.1 函数的表示法 2019 2020 学年 高中数 学人 必修 一学案 1.2 2.1 函数 表示
限制150内