2019-2020学年高中数学人教A版必修2学案:4.3.1-2 空间直角坐标系 空间两点间的距离公式 .doc
《2019-2020学年高中数学人教A版必修2学案:4.3.1-2 空间直角坐标系 空间两点间的距离公式 .doc》由会员分享,可在线阅读,更多相关《2019-2020学年高中数学人教A版必修2学案:4.3.1-2 空间直角坐标系 空间两点间的距离公式 .doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、4.3空间直角坐标系4.3.1空间直角坐标系4.3.2空间两点间的距离公式知识导图学法指导1.结合长方体、正棱锥等常见几何体,把握建系的方法,并能写出空间中的点在坐标系中的坐标2类比平面上两点间的距离,熟记空间两点间的距离公式3体会利用空间直角坐标系解决问题的步骤高考导航1.空间直角坐标系的应用很少单独命题,一般是在解答题中应用建立空间直角坐标系的方法求解,分值为23分2通过建立空间直角坐标系,计算两点间的距离公式或确定点的坐标,是常考知识点,常与后面将要学习的立体几何等知识相结合,分值为46分.知识点一空间直角坐标系的建立及坐标表示1空间直角坐标系(1)空间直角坐标系及相关概念空间直角坐标系
2、:从空间某一定点O引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系Oxyz.相关概念:点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,通过每两个坐标轴的平面叫作坐标平面,分别称为xOy平面、yOz平面、zOx平面(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系2空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫作点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫作点M的横坐标,y叫作点M的纵坐标,z叫作点
3、M的竖坐标空间直角坐标系的画法(1)x轴与y轴成135 (或45 ),x轴与z轴成135 (或45 )(2)y轴垂直于z轴,y轴和z轴的单位长相等,x轴上的单位长则等于y轴单位长的.知识点二空间两点间的距离公式1空间中任意一点P(x,y,z)与原点之间的距离|OP|;2空间中任意两点P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|.1.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算2空间中点坐标公式:设A(x1,y1,z1),B(x2,y2,z2),则AB中点P(,).小试身手1判断下列命题是否正确(正确的打“”,错误的打“”)(1)空
4、间直角坐标系中,在x轴上的点的坐标一定是(0,b,c)的形式()(2)空间直角坐标系中,在xOz平面内的点的坐标一定是(a,0,c)的形式()(3)空间直角坐标系中,点(1,2)关于yOz平面的对称点为(1,2)()答案:(1)(2)(3)2在空间直角坐标系中,下列各点中位于yOz平面内的是()A(3,2,1) B(2,0,0)C(5,0,2) D(0,1,3)解析:位于yOz平面内的点,其x坐标为0,其余坐标任意,故(0,1,3)在yOz平面内答案:D3点(2,0,3)在空间直角坐标系中的()Ay轴上 BxOy平面上CzOx平面上 D第一象限内解析:点(2,0,3)的纵坐标为0,所以该点在z
5、Ox平面上答案:C4若已知点A(1,1,1),B(3,3,3),则线段AB的长为()A4 B2C4 D3解析:|AB|4.答案:A类型一空间中点的坐标的确定例1如图,在长方体ABCDA1B1C1D1中,|AD|3,|AB|5,|AA1|4,建立适当的直角坐标系,写出此长方体各顶点的坐标【解析】如图,以DA所在直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴,建立空间直角坐标系Oxyz.因为长方体的棱长|AD|BC|3,|DC|AB|5,|DD1|AA1|4,显然D(0,0,0),A在x轴上,所以A(3,0,0);C在y轴上,所以C(0,5,0);D1在z轴上,所以D1(0,0,4);B
6、在xOy平面内,所以B(3,5,0);A1在xOz平面内,所以A1(3,0,4);C1在yOz平面内,所以C1(0,5,4)由B1在xOy平面内的射影为B(3,5,0),所以B1的横坐标为3,纵坐标为5,因为B1在z轴上的射影为D1(0,0,4),所以B1的竖坐标为4,所以B1(3,5,4).(1)建立适当的空间直角坐标系(2)利用线段长度结合符号写出各点坐标要注意与坐标轴正向相反的坐标为负方法归纳(1)建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上(2)对于长方体或正方体,一般取相邻的三条棱为x轴、y轴、z轴建立空间直角坐标系;确定点的坐标
7、时,最常用的方法就是求某些与轴平行的线段的长度,即将坐标转化为与轴平行的线段长度,同时要注意坐标的符号,这也是求空间点的坐标的关键跟踪训练1在三棱柱ABCA1B1C1中,侧棱AA1底面ABC,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标解析:如图所示,取AC的中点O和A1C1的中点O1,连接BO,OO1,可得BOAC,OO1AC,OO1BO,分别以OB,OC,OO1所在直线为x轴,y轴,z轴建立空间直角坐标系三棱柱各棱长均为1,OAOCO1C1O1A1,OB,点A,B,C均在坐标轴上,A,B,C.点A1,C1在yOz平面内,A1,C1.点B1在xOy平面内的射影为点B,且BB11,B1
8、,各点的坐标分别为A,B,C,A1,B1,C1.建立空间直角坐标系,求出有关线段的长,再写出各点的坐标类型二空间直角坐标系中的点的对称点例2在空间直角坐标系中,点P(2,1,4)关于x轴对称的点P1的坐标是_;关于xOy平面对称的点P2的坐标是_;关于点A(1,0,2)对称的点P3的坐标是_【解析】点P关于x轴对称后,它的横坐标不变,纵坐标和竖坐标均变为原来的相反数,所以点P关于x轴的对称点P1的坐标为(2,1,4)点P关于xOy平面对称后,它的横坐标和纵坐标均不变,竖坐标变为原来的相反数,所以点P关于xOy平面的对称点P2的坐标为(2,1,4)设点P关于点A的对称点的坐标为P3(x,y,z)
9、,由中点坐标公式可得解得故点P关于点A(1,0,2)对称的点P3的坐标为(4,1,0)【答案】(2,1,4)(2,1,4)(4,1,0)利用对称规律解决关于坐标轴、坐标平面的对称问题,利用中点坐标公式解决点关于点的对称问题方法归纳在空间直角坐标系内,已知点P(x,y,z),则有:点P关于原点的对称点是P1(x,y,z)点P关于横轴(x轴)的对称点是P2(x,y,z)点P关于纵轴(y轴)的对称点是P3(x,y,z)点P关于竖轴(z轴)的对称点是P4(x,y,z)点P关于xOy坐标平面的对称点是P5(x,y,z)点P关于yOz坐标平面的对称点是P6(x,y,z)点P关于xOz坐标平面的对称点是P7
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019-2020学年高中数学人教A版必修2学案:4.3.1-2 空间直角坐标系 空间两点间的距离公式 2019 2020 学年 高中数 学人 必修 4.3 空间 直角 坐标系 两点 距离 公式
链接地址:https://www.taowenge.com/p-2689695.html
限制150内