2019年高考数学高考题和高考模拟题分项版汇编专题09不等式推理与证明理含.docx
《2019年高考数学高考题和高考模拟题分项版汇编专题09不等式推理与证明理含.docx》由会员分享,可在线阅读,更多相关《2019年高考数学高考题和高考模拟题分项版汇编专题09不等式推理与证明理含.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题09 不等式、推理与证明1【2019年高考全国II卷理数】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行点是平衡点,位于地月连线的延长线上设地球质量为M,月球质量为M,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:.设,由于的值很小,因此在近似计算中,则r的近似值为ABCD【答案】D【解析】由,得因为,所以,即,解得,所以【名师点睛】由于本题题干较长,所以,
2、易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错2【2019年高考全国II卷理数】若ab,则Aln(ab)0B3a0Dab【答案】C【解析】取,满足,知A错,排除A;因为,知B错,排除B;取,满足,知D错,排除D,因为幂函数是增函数,所以,故选C【名师点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断3【2019年高考北京卷理数】若x,y满足,且y1,则3x+y的最大值为A7B1C5D7【答案】C【解析】由题意作出可行域如图阴影部分所示. 设,当直线经过点时,取最大值5.故选C【名师点睛】本题是简单
3、线性规划问题的基本题型,根据“画移解”等步骤可得解.题目难度不大,注重了基础知识基本技能的考查.4【2019年高考北京卷理数】在天文学中,天体的明暗程度可以用星等或亮度来描述两颗星的星等与亮度满足m2m1=lg,其中星等为mk的星的亮度为Ek(k=1,2)已知太阳的星等是26.7,天狼星的星等是1.45,则太阳与天狼星的亮度的比值为A 1010.1B 10.1C lg10.1D 1010.1【答案】A【解析】两颗星的星等与亮度满足,令,.故选:A【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识信息处理能力阅读理解能力以及指数对数运算.5【2019年高考天津卷理数】设变量满足约束条件,
4、则目标函数的最大值为A2B3C5D6【答案】D【解析】已知不等式组表示的平面区域如图中的阴影部分.目标函数的几何意义是直线在轴上的截距,故目标函数在点处取得最大值.由,得,所以.故选C.【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围即:一画,二移,三求6【2019年高考天津卷理数】设,则“”是“”的A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件【答案】B【解析】化简不等式,可知推不出,由能推出,故
5、“”是“”的必要不充分条件,故选B.【名师点睛】本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件.7【2019年高考浙江卷】若实数满足约束条件,则的最大值是AB 1C 10D 12【答案】C【解析】画出满足约束条件的可行域如图中阴影部分所示。因为,所以.平移直线可知,当该直线经过点A时,z取得最大值.联立两直线方程可得,解得.即点A坐标为,所以.故选C.【名师点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.8【2019年高考浙江卷】若,则“”是 “”的A充分不必要条件B必要不充分条件C充分必要条件D既
6、不充分也不必要条件【答案】A【解析】当时,当且仅当时取等号,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【名师点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.9【2019年高考全国II卷理数】中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1)半正多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的
7、所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有_个面,其棱长为_(本题第一空2分,第二空3分)【答案】26,【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有个面如图,设该半正多面体的棱长为,则,延长与交于点,延长交正方体棱于,由半正多面体对称性可知,为等腰直角三角形,即该半正多面体棱长为【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形10【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,
8、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元每笔订单顾客网上支付成功后,李明会得到支付款的80%当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付_元;在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_【答案】130 ;15.【解析】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.【名师点睛】本题主要考查不等
9、式的概念与性质数学的应用意识数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.11【2019年高考天津卷理数】设,则的最小值为_【答案】【解析】方法一:.因为,所以,即,当且仅当时取等号成立.又因为,当且仅当,即时取等号,结合可知,可以取到3,故的最小值为.方法二:.当且仅当时等号成立,故的最小值为.【名师点睛】使用基本不等式求最值时一定要验证等号是否能够成立.12(四川省棠湖中学2019届高三高考适应性考试数学(理)试题)已知集合,则ABCD【答案】C【解析】,故,故选C.【名师点睛】本题考查集合的交集,属于基础题,解题时注意对数不等式的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 考题 高考 模拟 题分项版 汇编 专题 09 不等式 推理 证明
限制150内