2019数学新设计北师大选修2-3课件:第一章 计数原理 习题课1 .ppt
《2019数学新设计北师大选修2-3课件:第一章 计数原理 习题课1 .ppt》由会员分享,可在线阅读,更多相关《2019数学新设计北师大选修2-3课件:第一章 计数原理 习题课1 .ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、习题课二项式定理的应用,二项展开式的应用1.利用通项公式求指定项、特征项(常数项,有理项等)或特征项的系数.2.近似计算,当|a|与1相比较很小且n不大时,常用近似公式(1a)n1na,使用公式时要注意a的条件以及对计算精确度的要求.3.整除性问题与求余数问题,对被除式进行合理的变形,把它写成恰当的二项式的形式,使其展开后的每一项含有除式的因式或只有一、二项不能整除.4.解决与杨辉三角有关的问题的一般方法是:观察分析,试验猜想结论证明,要得出杨辉三角中的数字的诸多排列规律,取决于我们的观察能力,注意观察方法:横看、竖看、斜看、连续看、隔行看,从多角度观察.,探究一,探究二,探究三,思维辨析,【
2、例1】在(3x-2y)20中,求:(1)二项式系数最大的项;(2)系数绝对值最大的项;(3)系数最大的项.,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,探究一,探究二,探究三,思维辨析,【例2】(1)用二项式定理证明1110-1能被100整除;(2)求9192被100除所得的余数.分析利用二项式定理证明整除问题关键是判断所证式子与除数之间的联系,要掌握好对式子的拆分,如本例的第(1)小题,可以利用1110=(10+1)10的展开式进行证明,第(2)小题则可利用9192=(100-9)92的展开式,或利用(90+1)92的展开式进行求解.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019数学新设计北师大选修2-3课件:第一章 计数原理 习题课1 2019 数学 设计 北师大 选修 课件 第一章 计数 原理 习题
限制150内