(整理版)放缩法在数列不等式证明中的运用.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《(整理版)放缩法在数列不等式证明中的运用.doc》由会员分享,可在线阅读,更多相关《(整理版)放缩法在数列不等式证明中的运用.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、放缩法在数列不等式证明中的运用高考中利用放缩方法证明不等式,文科涉及较少,但理科却常常出现,且多是在压轴题中出现。放缩法证明不等式有法可依,但具体到题,又常常没有定法,它综合性强,形式复杂,运算要求高,往往能考查考生思维的严密性,深刻性以及提取和处理信息的能力,较好地表达高考的甄别功能。本文旨在归纳几种常见的放缩法证明不等式的方法,以冀起到举一反三,抛砖引玉的作用。一、 放缩后转化为等比数列。例1. 满足:(1) 用数学归纳法证明:(2) ,求证:解:(1)略(2) 又 , 迭乘得: 点评:把握“这一特征对“进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。这道题如果放缩后裂项或者用数
2、学归纳法,似乎是不可能的,为什么?值得体味!二、放缩后裂项迭加例2数列,其前项和为求证:解:令,的前项和为当时, 的图象在处的切线方程为1用表示出2假设在上恒成立,求的取值范围3证明:解:12略3由II知:当令且当令即将上述n个不等式依次相加得整理得点评:此题是湖北高考理科第21题。近年,以函数为背景建立一个不等关系,然后对变量进行代换、变形,形成裂项迭加的样式,证明不等式,这是一种趋势,应特别关注。当然,此题还可考虑用数学归纳法,但仍需用第二问的结论。三、 放缩后迭乘例4.(1) 求(2) 令,求数列的通项公式(3) ,求证: 解:12略 由2得 点评:裂项迭加,是项项相互抵消,而迭乘是项项约分,其原理是一样的,都似多米诺骨牌效应。只是求项和时用迭加,求项乘时用迭乘。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整理 放缩法 数列 不等式 证明 中的 运用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内