评析问题217.doc
《评析问题217.doc》由会员分享,可在线阅读,更多相关《评析问题217.doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、评析问题217:近似图像导致尽失真相张元方(四川省宜宾市商职校 644000) 原题:已知函数,求方程在区间内解的个数问题提供者的解法1和解法2都是将方程的根转化为两个函数图像的交点来判断解法1是将方程的根转化为与的交点个数来判断,解法2是将方程的根转化为与的交点个数来判断水平直线与的交点,仅根据的单调性就容易判断,所以解法2是正确的,而“斜线”与的交点仅根据的单调性是不够的,必须更精确的画出此函数图像的性态解法1就是因为画图不精导致的错误 事实上,由解法1知:在上是增函数,同时又因为,当时,在上是凸函数于是我们可以作出更精确的图像,如图1由于在上是增的,凸函数,于是与在区间内可能有相切的情况
2、下面我们来求直线与相切时的切点坐标和切线方程,设切点为,于是切线斜率为,切线方程为,又切线过原点,所以切点为,切线为于是直线与()的位置关系如图2所示,其中点,于是根据图2,可知:当时,原方程没有实根;当或时,原方程有且只有一个实根;当时,原方程有两个实根,从而得到与解法2一致的正确答案鉴于高中阶段未涉及利用二阶导数判断函数的凹凸性,所以本题利用解法2这种参数分离法较好问题反思:数形结合的思想,实质上是把抽象的问题与形象化的原型结合起来,通过直观的原型的思维,化抽象为直观,化难为易反过来,给直观图形问题以计算推证,从而给人们以精确化的,理性化的理解数形结合的思想,正是把“最活跃的形象思维”与“最严密的逻辑思维、代数推导”结合起来理解问题,解决问题的思想方法华罗庚曾说过:“数缺形时少直观,形少数时难入微数形结合百般好,隔裂分家万事休”解法1正是“形”少“数”而导致的错误此题告诫我们:近似图形必须要辅之以数,才能作出准确的判断作者简介:本人张元方,男,74年9月出生,98年毕业于重庆师范大学数学系,现在四川省宜宾市商职校从事数学教学,中学一级教师。通讯地址:四川省宜宾市翠屏区南岸长江大道中段20号区社保局 张妍收 邮编:644000联系电话:13778932060 Email:zyf780206
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 评析 问题 217
限制150内