《三角恒等变换章末总结》教师版.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《《三角恒等变换章末总结》教师版.doc》由会员分享,可在线阅读,更多相关《《三角恒等变换章末总结》教师版.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三角恒等变换章末总结08.10.10一、教学目的:对第三章“三角恒等变换”进行章末知识总结,对重点、热点题型进行归纳总结。二. 重点、难点: 公式的灵活应用三、知识分析: 1、 本章网络结构 2、要点概述 (1)求值常用的方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等。 (2)要熟悉角的拆拼、变换的技巧,倍角与半角的相对性,如是的半角,是的倍角等。(3)要掌握求值问题的解题规律和途径,寻求角间关系的特殊性,化非特殊角为特殊角,正确选用公式,灵活地掌握各个公式的正用、逆用、变形用等。(4)求值的类型:“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但仔细观察非特
2、殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和差化积、积化和差、升降幂公式转化为特殊角并且消降非特殊角的三角函数而得解。“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系。“给值求角”:实质上可转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角。(5)灵活运用角和公式的变形,如:,等,另外重视角的范围对三角函数值的影响,因此要注意角的范围的讨论。(6)化简三角函数式常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角函数名称的变化(即当式子中所含三角
3、函数种类较多时,一般是“切割化弦”),有时,两种变换并用,有时只用一种,视题而定。(7)证明三角恒等式时,所用方法较多,一般有以下几种证明方法:从一边到另一边,两边等于同一个式子,作差法。 3、题型归纳(1)求值题 例1. 已知,且,求。分析:由已知条件求,应注意到角之间的关系,可应用两角差的余弦公式求得。解:由已知,得又由,得又由,得 点评:三角变换是解决已知三角函数值求三角函数值这类题型的关键; 常见角的变换:,等。(2)化简题 例2. 化简:,其中。分析:式中有单角与半角,可用倍角公式把化为。解:原式原式(3)证明题 例3. 求证:分析1:从右端向左端变形,将“切”化为“弦”,逐步化成左
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角恒等变换章末总结 三角 恒等 变换 总结 教师版
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内