《高中数学圆锥曲线总结.doc》由会员分享,可在线阅读,更多相关《高中数学圆锥曲线总结.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学圆锥曲线总结1、圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与|FF|不可忽视。若|FF|,则轨迹是以F,F为端点的两条射线,若|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相
2、应准线距离间的关系,要善于运用第二定义对它们进行相互转化。Attention:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,在双曲线中,最大,。4.圆锥曲线的几何性质:(1) 椭圆(以()为例):范围:;焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;准线:两条准线; 离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。(2) (
3、2)双曲线(以()为例):范围:或;焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;准线:两条准线; 离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;两条渐近线:。(3) 抛物线(以为例):范围:;焦点:一个焦点,其中的几何意义是:焦点到准线的距离;对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);准线:一条准线; 离心率:,抛物线。5、点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上1;(3)点在椭圆内6直线与圆锥曲线的位置关系:(1) 相交:直线与椭圆
4、相交; 直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是必要条件。Attention:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线1外一点的直线与双曲线只有一个公共点的
5、情况如下:P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;P为原点时不存在这样的直线;(2) 过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。7、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。8、焦点三角形(椭圆或
6、双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。设椭圆或双曲线上的一点到两焦点的距离分别为,焦点的面积为,则在椭圆中, ,且当即为短轴端点时,最大为;,当即为短轴端点时,的最大值为bc;对于双曲线的焦点三角形有:;。9、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设AB为焦点弦, M为准线与x轴的交点,则AMFBMF;(3)设AB为焦点弦,A、B在准线上的射影分别为A,B,若P为AB的中点,则PAPB;(4)若AO的延长线交准线于C,则BC平行于x轴,反之,若过B点平行于x轴的直线交准线于C点,则A,O,C三点共线。1
7、0、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则,若分别为A、B的纵坐标,则,若弦AB所在直线方程设为,则。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。Attention:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!12重要结论:(1)双曲线的渐近线方程为;(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,0)。如与双曲线有共同的渐近线,且过点的双曲线方程为_(答:)(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物线的通径为,焦准距为;(5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线的焦点弦为AB,则;(7)若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点
限制150内