《第四章曲线运动 1.doc》由会员分享,可在线阅读,更多相关《第四章曲线运动 1.doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第 28 页 共 28 页第四章 曲线运动典例(2018绵阳质检)小船匀速横渡一条河流,当船头垂直对岸方向航行时,在出发后10 min到达对岸下游120 m处;若船头保持与河岸成角向上游航行,出发后12.5 min到达正对岸。求:(1)水流的速度;(2)小船在静水中的速度、河的宽度以及船头与河岸间的夹角。解析(1)船头垂直对岸方向航行时,如图甲所示。由xv2t1得v2 m/s0.2 m/s。(2)船头保持与河岸成角航行时,如图乙所示。v2v1cos dv1sin t2由图甲可得dv1t1联立解得53,v10.33 m/s,d200 m。答案(1)0.2 m/s(2)0.33 m/s200 m5
2、3易错提醒(1)船的航行方向即船头指向,是分运动;船的运动方向是船的实际运动方向,是合运动,一般情况下与船头指向不一致。(2)渡河时间只与船垂直于河岸方向的分速度有关,与水流速度无关。(3)船沿河岸方向的速度为船在静水中的速度沿河岸方向的分速度与水流速度的合速度,而船头垂直于河岸方向时,船沿河岸方向的速度等于水流速度。 典例多选如图所示,有一个沿水平方向做匀速直线运动的半径为R的半圆柱体,半圆柱面上搁着一个只能沿竖直方向运动的竖直杆,在竖直杆未达到半圆柱体的最高点之前()A半圆柱体向右匀速运动时,竖直杆向上做匀减速直线运动B半圆柱体向右匀速运动时,竖直杆向上做减速直线运动C半圆柱体以速度为v向
3、右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为时,竖直杆向上的运动速度为vtan D半圆柱体以速度为v向右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为时,竖直杆向上的运动速度为vsin 解析O点向右运动,O点的运动使杆AO绕A点逆时针转动的同时,沿杆OA方向向上推动A点;竖直杆的实际运动(A点的速度)方向竖直向上,使A点绕O点逆时针转动的同时,沿OA方向(弹力方向)与OA杆具有相同的速度。速度分解如图所示,对O点,v1vsin ,对于A点,vAcos v1,解得vAvtan ,O点(半圆柱体)向右匀速运动时,杆向上运动,角减小,tan 减小,vA减小,但杆不做匀减速
4、运动,A错误,B正确;由vAvtan 可知C正确,D错误。答案BC3.如图所示,悬线一端固定在天花板上的O点,另一端穿过一张CD光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿。现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为时,小球上升的速度大小为()Avsin Bvcos Cvtan D.解析:选A由题意可知,悬线与光盘交点参与两个运动,一是沿着悬线方向的运动,二是垂直悬线方向的运动,则合运动的速度大小为v,由数学三角函数关系,则有v线vsin ;而悬线速度的大小,即为小球上升的速度大小
5、,故A正确。1(2018重庆月考)关于两个运动的合成,下列说法正确的是()A两个直线运动的合运动一定也是直线运动B方向不共线的两个匀速直线运动的合运动一定也是匀速直线运动C小船渡河的运动中,小船的对地速度一定大于水流速度D小船渡河的运动中,水流速度越大,小船渡河所需时间越短解析:选B两个直线运动可以合成为直线运动(匀速直线匀速直线),也可以合成为曲线运动(匀变速直线匀速直线),故选项A错误;两个分运动为匀速直线运动,没有分加速度,合运动就没有加速度,则合运动一定是匀速直线运动,则选项B正确;小船对地的速度是合速度,其大小可以大于水速(分速度)、等于水速、或小于水速,故选项C错误;渡河时间由小船
6、垂直河岸方向的速度决定,由运动的独立性知与水速的大小无关,选项D错误。2.多选一质点在xOy平面内的运动轨迹如图所示,下列判断正确的是()A质点沿x轴方向可能做匀速运动B质点沿y轴方向可能做变速运动C若质点沿y轴方向始终匀速运动,则沿x轴方向可能先加速后减速D若质点沿y轴方向始终匀速运动,则沿x轴方向可能先减速后加速解析:选BD质点做曲线运动,合力大致指向轨迹凹侧,即加速度大致指向轨迹凹侧,由题图可知加速度方向指向弧内,不可能沿y轴方向,x轴方向有加速度分量,所以沿x轴方向上,质点不可能做匀速运动,y轴方向可能有加速度分量,故质点沿y轴方向可能做变速运动,A错误,B正确;质点在x轴方向先沿正方
7、向运动,后沿负方向运动,最终在x轴方向上的位移为零,所以质点沿x轴方向不能一直加速,也不能先加速后减速,只能先减速后反向加速,C错误,D正确。5.如图所示,开始时A、B间的细绳呈水平状态,现由计算机控制物体A的运动,使其恰好以速度v沿竖直杆匀速下滑,经细绳通过定滑轮拉动物体B在水平面上运动,则下列v t图像中,最接近物体B的运动情况的是()解析:选A将与物体A相连的绳端速度v分解为沿绳伸长方向的速度v1和垂直于绳方向的速度v2,则物体B的速度vBv1vsin ,在t0时刻0, vB0,C项错误;之后随增大,sin 增大,B的速度增大,但开始时变化快,速度增加得快,图线的斜率大,随增大,速度增加
8、得慢,若绳和杆足够长,则物体B的速度趋近于A的速度,只有A项正确。7.多选(2018德阳一诊)甲、乙两船在同一河流中同时开始渡河,河水流速为v0,船在静水中的速率均为v,甲、乙两船船头均与河岸成角,如图所示,已知甲船恰能垂直到达河正对岸的A点,乙船到达河对岸的B点,A、B之间的距离为L,则下列判断正确的是()A乙船先到达对岸B若仅是河水流速v0增大,则两船的渡河时间都不变C不论河水流速v0如何改变,只要适当改变角,甲船总能到达正对岸的A点D若仅是河水流速v0增大,则两船到达对岸时,两船之间的距离仍然为L解析:选BD将小船的运动分解为平行于河岸和垂直于河岸两个方向,抓住分运动和合运动具有等时性,
9、知甲、乙两船到达对岸的时间相等,渡河的时间t,故A错误;若仅是河水流速v0增大,则渡河的时间仍为t,两船的渡河时间都不变,故B正确;只有甲船速度大于水流速度时,甲船才可能到达河的正对岸A点,故C错误;若仅是河水流速v0增大,则两船到达对岸时间不变,根据速度的分解,船在沿岸方向的分速度仍不变,两船之间的相对速度不变,则两船之间的距离仍然为L,故D正确。8.(2018泉州模拟)如图所示,一质点受一恒定合外力F作用从y轴上的A点平行于x轴射出,经过一段时间到达x轴上的B点,在B点时其速度垂直于x轴指向y轴负方向,质点从A到B的过程,下列判断正确的是()A合外力F可能指向y轴负方向B该质点的运动为匀变
10、速运动C该质点的速度大小可能保持不变D该质点的速度一直在减小解析:选B物体受到一恒力,从A到B,根据曲线运动条件,则有合外力的方向在x轴负方向与y轴负方向之间,不可能沿y轴负方向,否则B点的速度不可能垂直x轴,故A错误;由于受到一恒力,因此做匀变速曲线运动,故B正确;因受到一恒力,因此不可能做匀速圆周运动,所以速度大小一定变化,故C错误;根据力与速度的夹角,可知,速度先减小后增大,故D错误。11.如图所示,甲、乙两船在同一条水流匀速的河流中同时开始渡河,M、N分别是甲、乙两船的出发点,两船头与河岸均成角,甲船船头恰好对准N点的正对岸P点,经过一段时间乙船恰好到达P点,如果划船速度大小相同,且两
11、船相遇不影响各自的航行,下列判断正确的是()A甲船也能到达M点正对岸B甲船渡河时间一定短C两船相遇在NP直线上的某点(非P点)D渡河过程中两船不会相遇解析:选C乙船垂直河岸到达正对岸,说明水流方向向右;甲船参与了两个分运动,沿着船头指向的匀速运动,随着水流方向的匀速运动,故不可能到达M点正对岸,故A错误;小船过河的速度为船本身的速度垂直河岸方向的分速度vyvsin ,小船过河的时间t,故甲、乙两船到达对岸的时间相同,故B错误;以流动的水为参考系,两船相遇点在速度方向延长线的交点上;又由于乙船实际上沿着NP方向运动,故相遇点在NP直线上的某点(非P点),故C正确,D错误。12.多选如图所示,用一
12、根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,通过两个滑轮后挂上重物M。C点与O点距离为L,现在杆的另一端用力使其逆时针匀速转动,由竖直位置以角速度缓慢转至水平(转过了90角),此过程中下列说法正确的是()A重物M做匀速直线运动B重物M做匀变速直线运动C重物M的最大速度是LD重物M的速度先增大后减小解析:选CD与杆垂直的速度v是C点的实际速度,vT是细绳的速度,即重物M的速度。设vT与v的夹角是,则vTvcos ,开始时减小,则vT增大;当杆与细绳垂直(0)时,重物M的速度最大,为vmaxL,然后再
13、减小,C、D正确。3.多选(2018德阳一诊)甲、乙两船在同一河流中同时开始渡河,河水流速为v0,船在静水中的速率均为v,甲、乙两船船头均与河岸成角,如图所示,已知甲船恰能垂直到达河正对岸的A点,乙船到达河对岸的B点,A、B之间的距离为L,则下列判断正确的是()A乙船先到达对岸B若仅是河水流速v0增大,则两船的渡河时间都不变C不论河水流速v0如何改变,只要适当改变角,甲船总能到达正对岸的A点D若仅是河水流速v0增大,则两船到达对岸时,两船之间的距离仍然为L解析:选BD将小船的运动分解为平行于河岸和垂直于河岸两个方向,抓住分运动和合运动具有等时性,知甲、乙两船到达对岸的时间相等,渡河的时间t,故
14、A错误;若仅是河水流速v0增大,则渡河的时间仍为t,两船的渡河时间都不变,故B正确;只有甲船速度大于水流速度时,甲船才可能到达河的正对岸A点,故C错误;若仅是河水流速v0增大,则两船到达对岸时间不变,根据速度的分解,船在沿岸方向的分速度仍不变,两船之间的相对速度不变,则两船之间的距离仍然为L,故D正确。4.(2018泉州模拟)如图所示,一质点受一恒定合外力F作用从y轴上的A点平行于x轴射出,经过一段时间到达x轴上的B点,在B点时其速度垂直于x轴指向y轴负方向,质点从A到B的过程,下列判断正确的是()A合外力F可能指向y轴负方向B该质点的运动为匀变速运动C该质点的速度大小可能保持不变D该质点的速
15、度一直在减小解析:选B物体受到一恒力,从A到B,根据曲线运动条件,则有合外力的方向在x轴负方向与y轴负方向之间,不可能沿y轴负方向,否则B点的速度不可能垂直x轴,故A错误;由于受到一恒力,因此做匀变速曲线运动,故B正确;因受到一恒力,因此不可能做匀速圆周运动,所以速度大小一定变化,故C错误;根据力与速度的夹角,可知,速度先减小后增大,故D错误。5.(2018合肥模拟)如图所示,船从A点开出后沿直线AB到达对岸,若AB与河岸成37角,水流速度为4 m/s,则船从A点开出的最小速度为()A2 m/sB2.4 m/sC3 m/s D3.5 m/s解析:选B设水流速度为v1,船在静水中的速度为v2,船
16、沿AB方向航行时,运动的分解如图所示,当v2与AB垂直时,v2最小,v2minv1sin 372.4 m/s,选项B正确。6.多选如图所示,人在岸上拉船,已知船的质量为m,水的阻力恒为f,当轻绳与水平面的夹角为时,船的速度为v,此时人的拉力大小为F,则()A人拉绳行走的速度为vcos B人拉绳行走的速度为C船的加速度为D船的加速度为解析:选AC船的速度产生了两个效果:一是滑轮与船间的绳缩短,二是绳绕滑轮顺时针转动,因此将船的速度进行分解,如图所示,人拉绳行走的速度v人vcos ,A对、B错;绳对船的拉力等于人拉绳的力,即绳的拉力大小为F,与水平方向成角,因此Fcos fma,得a,C对、D错。
17、8如图所示,在竖直平面内的xOy坐标系中,Oy竖直向上,Ox水平。设平面内存在沿x轴正方向的恒定风力。一小球从坐标原点沿Oy方向竖直向上抛出,初速度为v04 m/s,不计空气阻力,到达最高点的位置如图中M点所示,(坐标格为正方形,g取10 m/s2)求:(1)小球在M点的速度v1;(2)在图中定性画出小球的运动轨迹并标出小球落回x轴时的位置N;(3)小球到达N点的速度v2的大小。解析:(1)设正方形的边长为s0。小球竖直方向做竖直上抛运动,v0gt1,2s0t1水平方向做匀加速直线运动,3s0t1解得v16 m/s。(2)由竖直方向运动的对称性可知,小球再经过t1到达x轴,水平方向做初速度为零
18、的匀加速直线运动,所以回到x轴时落到x12处,位置N的坐标为(12,0),运动轨迹及N如图。(3)到N点时竖直分速度大小为v04 m/s,水平分速度vxa水平tN2v112 m/s,故v24 m/s。答案:(1)6 m/s(2)见解析图(3)4 m/s9河宽60 m,水流速度v16 m/s,小船在静水中的速度v23 m/s,求:(1)小船渡河的最短时间;(2)小船渡河的最短航程。解析:(1)当小船垂直河岸航行时,渡河时间最短,tmin s20 s。 (2)因为船速小于水速,所以小船一定向下游漂移。如图所示,以v1矢量末端为圆心,以v2矢量的大小为半径画弧,从v1矢量的始端向圆弧作切线,则合速度
19、沿此切线方向时航程最短。由图可知,最短航程为x短d60 m120 m。答案:(1)20 s(2)120 m10.如图所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B点后,立即沿原路线返回到O点,OA、OB分别与水流方向平行和垂直,且。若水流速度不变,两人在静水中游速相等,则他们所用时间 t甲、t乙的大小关系为 ()At甲t乙 D无法确定解析:选C设水速为v0,人在静水中的速度为v,x。对甲,OA阶段人对地的速度为(vv0),所用时间t1;AO阶段人对地的速度为(vv0),所用时间t2。所以甲所用时间t甲t1t2。对乙,OB阶段和BO阶段的实际速度v为v和v0的合成,如图所示。由几何关系
20、得,实际速度v,故乙所用时间t乙。1,即t甲t乙,故C正确。11.(2018石家庄检测)一轻杆两端分别固定质量为mA和mB的两个小球A和B(可视为质点)。将其放在一个光滑球形容器中从位置1开始下滑,如图所示,当轻杆到达位置2时球A与球形容器球心等高,其速度大小为v1,已知此时轻杆与水平方向成30角,B球的速度大小为v2,则()Av2v1Bv22v1Cv2v1 Dv2v1解析:选C球A与球形容器球心等高,速度v1方向竖直向下,速度分解如图所示,有v11v1sin 30v1,球B此时速度方向与杆成60角,因此v21v2cos 60v2,沿杆方向两球速度相等,即v21v11,解得v2v1,C项正确。
21、12.(2018广州检测)如图所示,物体a、b、c分别穿在竖直固定的直杆上,且物体a、b、c由轻质不可伸长的细线通过两定滑轮相连。某时刻物体a有向下的速度v0,吊住物体c的两根细线与竖直方向的夹角分别为和,则物体b的速度大小为()A.v0 B.v0C.v0 D以上均错解析:选A研究左侧细线,把物体c的速度vc沿细线和垂直细线分解为v0和v1,可得vc、竖直向上;再研究右侧细线,把物体c的速度vc沿细线和垂直细线分解为vb和v2,vc,联立这两式解得vbv0。13.如图所示,一根长为L的轻杆OA,O端用铰链固定,轻杆靠在一个高为h的物块上,某时刻杆与水平方向的夹角为,物块向右运动的速度为v,则此
22、时A点速度为()A. B.C. D.解析:选C如图所示,根据运动的合成与分解可知,接触点B的实际运动为合运动,可将B点运动的速度vBv沿垂直于杆和沿杆的方向分解成v2和v1,其中v2vBsin vsin 为B点做圆周运动的线速度,v1vBcos 为B点沿杆运动的速度。当杆与水平方向夹角为时,OB,由于B点的线速度为v2vsin OB,所以,所以A的线速度vAL,选项C正确。2(2017全国卷)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。速度较大的球越过球网,速度较小的球没有越过球网。其原因是()A速度较小的球下降相同距离所用的时间较多B速度较小的球在下降相同距离
23、时在竖直方向上的速度较大C速度较大的球通过同一水平距离所用的时间较少D速度较大的球在相同时间间隔内下降的距离较大解析:选C发球机从同一高度水平射出两个速度不同的乒乓球,根据平抛运动规律,竖直方向上,hgt2,可知两球下落相同距离h所用的时间是相同的,选项A错误。由vy22gh可知,两球下落相同距离h时在竖直方向上的速度vy相同,选项B错误。由平抛运动规律,水平方向上,xvt,可知速度较大的球通过同一水平距离所用的时间t较少,选项C正确。由于做平抛运动的球在竖直方向的运动为自由落体运动,两球在相同时间间隔内下降的距离相同,选项D错误。3.(2018抚顺一模)如图所示,离地面高h处有甲、乙两个物体
24、,甲以初速度v0水平射出,同时乙以初速度v0沿倾角为45的光滑斜面滑下。若甲、乙同时到达地面,则v0的大小是()A.B.C. D2解析:选A甲做平抛运动,水平方向做匀速运动,竖直方向做自由落体运动,根据hgt2,得:t 根据几何关系可知:x乙h乙做匀加速直线运动,根据牛顿第二定律可知:ag根据位移时间公式可知:x乙v0tat2由式得:v0,所以A正确。1(2017江苏高考)如图所示,A、B两小球从相同高度同时水平抛出,经过时间t在空中相遇。若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为()AtB.tC. D.解析:选C设两球间的水平距离为L,第一次抛出的速度分别为v1、v2,
25、由于小球抛出后在水平方向上做匀速直线运动,则从抛出到相遇经过的时间t,若两球的抛出速度都变为原来的2倍,则从抛出到相遇经过的时间为t,C项正确。3.多选如图所示,A、B两点在同一条竖直线上,A点离地面的高度为2.5h,B点离地面高度为2h。将两个小球分别从A、B两点水平抛出,它们在P点相遇,P点离地面的高度为h。已知重力加速度为g,则( )A两个小球一定同时抛出B两个小球抛出的时间间隔为() C小球A、B抛出的初速度之比 D小球A、B抛出的初速度之比 解析:选BD平抛运动在竖直方向上做自由落体运动,由Hgt2,得t ,由于A到P的竖直高度较大,所以从A点抛出的小球运动时间较长,应先抛出,故A错
26、误;由t ,得两个小球抛出的时间间隔为ttAtB () ,故B正确;由xv0t得v0x ,x相等,则小球A、B抛出的初速度之比 ,故C错误,D正确。例1(2018商丘一中押题卷)如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点。O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为60,重力加速度为g,则小球抛出时的初速度为()A. B. C. D. 解析飞行过程中恰好与半圆轨道相切于B点,则知速度与水平方向的夹角为30,则有:vyv0tan 30,又vygt,则得:v0tan 30gt,t水平方向上小球做匀速直线运动,则有:
27、RRcos 60v0t联立解得:v0 。答案B例2如图所示,两小球a、b从直角三角形斜面的顶端以相同大小的水平速度v0向左、向右水平抛出,分别落在两个斜面上,三角形的两底角分别为30和60,则两小球a、b运动时间之比为( )A1B13C.1 D31解析设a、b两球运动的时间分别为ta和tb,则tan 30,tan 60,两式相除得:。答案B 例3斜面上有a、b、c、d四个点,如图所示,abbccd,从a点正上方的O点以速度v水平抛出一个小球,它落在斜面上b点,若小球从O点以速度2v水平抛出,不计空气阻力,则它落在斜面上的()Ab与c之间某一点 Bc点Cc与d之间某一点 Dd点解析假设斜面是一层
28、很薄的纸,小球落上就可穿透且不损失能量,过b点作水平线交Oa于a,由于小球从O点以速度v水平抛出时,落在斜面上b点,则小球从O点以速度2v水平抛出,穿透斜面后应落在水平线ab延长线上的c点,如图所示,因abbc,则abbc,即c点在c点的正下方,显然,小球轨迹交于斜面上b与c之间。所以,本题答案应选A。答案A例4如图所示,从倾角为且足够长的斜面的顶点A,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v1,小球落到斜面上前一瞬间的速度方向与斜面的夹角为1,第二次初速度为v2,小球落在斜面上前一瞬间的速度方向与斜面间的夹角为2,若v2v1,则1和2的大小关系是()A12 B1vbvcta
29、tbtcBvavbvctatbtcCvavbtbtc Dvavbvctatbhbhc,根据hgt2,知tatbtc,根据xaxbxc,xvt知,a的水平位移最短,时间最长,则速度最小;c的水平位移最长,时间最短,则速度最大,所以有vavbvc。故C正确,A、B、D错误。4(2018邯郸一中调研)如图,斜面AC与水平方向的夹角为,在A点正上方与C等高处水平抛出一小球,其速度垂直于斜面落到D点,则CD与DA的比为()A. B.C. D.解析:选D设小球水平方向的速度为v0,将D点的速度进行分解,水平方向的速度等于平抛运动的初速度,通过几何关系求解,得竖直方向的末速度为v2,设该过程用时为t,则DA
30、间水平距离为v0t,故DA;CD间竖直距离为,故CD,得,故D正确。5多选如图所示,横截面为直角三角形的两个相同斜面紧靠在一起,固定在水平面上,小球从左边斜面的顶点以不同的初速度向右水平抛出,最后落在斜面上。其中有三次的落点分别是a、b、c,不计空气阻力,则下列判断正确的是()A落点b、c比较,小球落在c点的飞行时间短B小球落在a点和b点的飞行时间均与初速度v0成正比C三个落点比较,小球落在c点,飞行过程中速度变化最快D三个落点比较,小球落在c点,飞行过程中速度变化最大解析:选AB由平抛运动规律hgt2得t ,可知,落点为b时,小球的竖直位移较大,故飞行时间较长,A正确;落点为a、b时,两次位
31、移方向相同,故tan ,可见飞行时间t与v0成正比,B项正确;小球在飞行过程中速度变化快慢即加速度,均为g,C项错误;小球在飞行过程中,水平方向上速度不变,速度变化vgt,由t 可知,小球落在b点时速度变化最大,D项错误。6.多选如图所示,B球在水平面内做半径为R的匀速圆周运动,竖直平台与轨迹相切且高度为R,当B球运动到切点时,在切点正上方的A球水平飞出,速度大小为 ,g为重力加速度大小,要使B球运动一周内与A球相遇,则B球的速度大小为()A. B.C D2解析:选ABA球平抛运动的时间t ,水平位移大小xv0tR,A球的落点在圆周上,从上向下看有两种可能,A球水平位移与直径的夹角均为30。若
32、在C点相遇,B球转过的角度为,则B球的速度大小为vB,A正确;若在D点相遇,B球转过的角度为,则B球的速度大小为vB,B正确。7.多选(2018长沙联考)在某次高尔夫球比赛中,美国选手罗伯特斯特布击球后,球恰好落在洞的边缘,假定洞内bc表面为球面,半径为R,且空气阻力可忽略,重力加速度大小为g,把此球以大小不同的初速度v0沿半径方向水平击出,如图所示,球落到球面上,下列说法正确的是()A落在球面上的最大速度为2B落在球面上的最小速度为 C小球的运动时间与v0大小无关D无论调整v0大小为何值,球都不可能垂直撞击在球面上解析:选BD平抛运动竖直方向的分运动是自由落体运动,由hgt2,得t。设小球落
33、在A点时,OA与竖直方向之间的夹角为,水平方向的位移为x,竖直方向的位移为y,到达A点时竖直方向的速度为vy,则xv0tRsin ,yRcos ,得vy22gRcos ,v02,又由vt,所以落在球面上的小球有最小速度,当cos 时,速度最小,最小速度为,故A错误,B正确;由以上的分析可知,小球下落的时间t ,其中cos 与小球的初速度有关,故C错误;小球撞击在球面上时,根据“平抛运动速度的反向延长线交于水平位移的中点”结论可知,由于O点不在水平位移的中点,所以小球撞在球面上的速度反向延长线不可能通过O点,也就不可能垂直撞击在球面上,故D正确。9(2018重庆江北区联考)如图所示,倾角为37的
34、斜面长l1.9 m,在斜面底端正上方的O点将一小球以v03 m/s的速度水平抛出,与此同时由静止释放斜面顶端的滑块,经过一段时间后,小球恰好能够以垂直于斜面的速度在斜面P点处击中滑块。(小球和滑块均可视为质点,重力加速度g取10 m/s2,sin 370.6,cos 370.8),求:(1)抛出点O离斜面底端的高度;(2)滑块与斜面间的动摩擦因数。解析:(1)设小球击中滑块时的速度为v,竖直速度为vy,如图所示,由几何关系得tan 37设小球下落的时间为t,竖直位移为y,水平位移为x,由运动学规律得vygt,ygt2,xv0t设抛出点到斜面底端的高度为h,由几何关系得hyxtan 37联立解得
35、h1.7 m。(2)设在时间t内,滑块的位移为s,由几何关系得sl设滑块的加速度为a,由运动学公式得sat2对滑块,由牛顿第二定律得mgsin 37mgcos 37ma联立解得0.125。答案:(1)1.7 m(2)0.12510(2018辽宁鞍山一中模拟)用如图甲所示的水平斜面装置研究平抛运动,一物块(可视为质点)置于粗糙水平面上的O点,O点与斜面顶端P点的距离为s。每次用水平拉力F,将物块由O点从静止开始拉动,当物块运动到P点时撤去拉力F。实验时获得物块在不同拉力作用下落在斜面上的不同水平射程,作出了如图乙所示的图像,若物块与水平面间的动摩擦因数为0.5,斜面与水平地面之间的夹角45,g取
36、10 m/s2,设最大静摩擦力等于滑动摩擦力。则O、P间的距离s是多少?(保留两位有效数字)解析:根据牛顿第二定律,在OP段有Fmgma,又2asvP2,由平抛运动规律和几何关系有物块的水平射程xvPt,物块的竖直位移ygt2,由几何关系有yxtan ,联立以上各式可以得到x,解得F xmg。由题图乙知mg5,10,代入数据解得s0.25 m。答案:0.25 m11.(2018沧州一中月考)如图,竖直平面内有一段圆弧MN,小球从圆心O处水平抛出;若初速度为va,将落在圆弧上的a点;若初速度为vb,将落在圆弧上的b点;已知Oa、Ob与竖直方向的夹角分别为、,不计空气阻力,则()A. B. C.
37、D. 解析:选D对落在a点的小球,根据Rcos gt12得,t1 ,则vaRsin ;对落在b点的小球,根据Rcos gt22得,t2 ,则vbRsin ,解得 ,答案为D。12多选(2018潍坊期中)如图所示,从水平地面上a、b两点同时抛出两个物体,初速度分别为v1和v2,与水平方向所成角度分别为30和60。某时刻两物体恰好在ab连线上一点O(图中未画出)的正上方相遇,且此时两物体速度均沿水平方向,不计空气阻力。则()Av1v2 Bv1v2COaOb DOaOb解析:选AC两物体做斜抛运动,在竖直方向减速,在水平方向匀速对从a点抛出的物体:v1xv1cos 30v1,v1yv1sin 30v1,竖直方向通过的位移为:h对从b点抛出的物体:v2xv2cos 60,v2yv2sin 60v2,竖直方向通过的位移为:h。因hh,联立解得:v1v2,故A正确,B错误;由于v1xv1,v2xv2,则有从a点抛出的物体在水平方向的速度大于从b点抛出的物体在水平方向的速度,故在水平方向上,从a点抛出的物体通过的位移大于从b点抛
限制150内