学案24正弦定理和余弦定理应用举例.doc
《学案24正弦定理和余弦定理应用举例.doc》由会员分享,可在线阅读,更多相关《学案24正弦定理和余弦定理应用举例.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学案24正弦定理和余弦定理应用举例导学目标: 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题自主梳理1仰角和俯角与目标视线同在一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图所示)2方位角一般指北方向线顺时针到目标方向线的水平角,如方位角45,是指北偏东45,即东北方向3方向角:相对于某一正方向的水平角(如图所示)北偏东即由指北方向顺时针旋转到达目标方向北偏西即由指北方向逆时针旋转到达目标方向南偏西等其他方向角类似4坡角坡面与水平面的夹角(如图所示)5坡比坡面的铅直高度与水平宽度之比,即itan (i为坡
2、比,为坡角)6解题的基本思路运用正、余弦定理处理实际测量中的距离、高度、角度等问题,实质是数学知识在生活中的应用,要解决好,就要把握如何把实际问题数学化,也就是如何把握一个抽象、概括的问题,即建立数学模型自我检测1从A处望B处的仰角为,从B处望A处的俯角为,则,之间的关系是 ()ABC90D1802(2011承德模拟)如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40,灯塔B在观察站C的南偏东60,则灯塔A在灯塔B的 ()A北偏东10B北偏西10C南偏东10D南偏西103如图所示,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,不能确定A、B间距离的是 (
3、)A,a,bB,aCa,b,D,b4在200 m高的山顶上,测得山下一塔的塔顶与塔底的俯角分别是30、60,则塔高为_m.5(2010全国)ABC中,D为边BC上的一点,BD33,sin B,cosADC,求AD.探究点一与距离有关的问题例1(2010陕西)如图,A,B是海面上位于东西方向相距5(3)海里的两个观测点,现位于A点北偏东45,B点北偏西60的D点有一艘轮船发出求救信号,位于B点南偏西60且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?变式迁移1某观测站C在目标A的南偏西25方向,从A出发有一条南偏东35走向的公路,在C处测得
4、与C相距31千米的公路上B处有一人正沿此公路向A走去,走20千米到达D,此时测得CD为21千米,求此人在D处距A还有多少千米?探究点二测量高度问题例2如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得BCD,BDC,CDs,并在点C测得塔顶A的仰角为,求塔高AB.变式迁移2某人在塔的正东沿着南偏西60的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30,求塔高探究点三三角形中最值问题例3(2010江苏)某兴趣小组要测量电视塔AE的高度H(单位:m),示意图如图所示,垂直放置的标杆BC的高度h4 m,仰角ABE,ADE.(1)该小组已测得一组、的
5、值,算出了tan 1.24,tan 1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精度若电视塔实际高度为125 m,试问d为多少时,最大?变式迁移3(2011宜昌模拟)如图所示,已知半圆的直径AB2,点C在AB的延长线上,BC1,点P为半圆上的一个动点,以DC为边作等边PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值1解三角形的一般步骤(1)分析题意,准确理解题意分清已知与所求,尤其要理解应用题中的有关名词、术语,如坡度、仰角、俯角、方位角等(2)根据题意画出示意图(3)将需求解的问题归
6、结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解演算过程中,要算法简练,计算正确,并作答(4)检验解出的答案是否具有实际意义,对解进行取舍2应用举例中常见几种题型测量距离问题、测量高度问题、测量角度问题、计算面积问题、航海问题、物理问题等 (满分:75分)一、选择题(每小题5分,共25分)1如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 ()A.B.C.D.2(2011揭阳模拟)如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50 m,ACB45,CAB105后,就可以计算出A、B两点的距离为 ()A50 mB50
7、 mC25 mD. m3ABC的两边长分别为2,3,其夹角的余弦值为,则其外接圆的半径为 ()A.B.C.D94(2011沧州模拟)某人向正东方向走x km后,向右转150,然后朝新方向走3 km,结果他离出发点恰好是 km,那么x的值为 ()A.B2C.或2D35一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60方向,另一灯塔在船的南偏西75方向,则这只船的速度是每小时 ()A5海里B5海里C10海里D10海里题号12345答案二、填空题(每小题4分,共12分)6一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在
8、北偏东60方向,行驶4 h后,船到B处,看到这个灯塔在北偏东15方向,这时船与灯塔的距离为_7(2011台州模拟)某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为10米(如图所示),旗杆底部与第一排在一个水平面上若国歌长度约为50秒,升旗手应以_米/秒的速度匀速升旗8(2011宜昌模拟)线段AB外有一点C,ABC60,AB200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始_h后,两车的距离最小三、解答题(共38分)9(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 24 正弦 定理 余弦 应用 举例
限制150内