315空间向量运算的坐标表示导学案.doc
《315空间向量运算的坐标表示导学案.doc》由会员分享,可在线阅读,更多相关《315空间向量运算的坐标表示导学案.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.1.5 空间向量运算的坐标表示 学习目标 1. 掌握空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式;2. 会用这些公式解决有关问题. 学习过程 一、课前准备(预习教材P95 P97,找出疑惑之处)复习1:设在平面直角坐标系中,A,B,则线段AB .复习2:已知,求:a. 3ab; 6 ; ab.二、新课导学 学习探究探究任务一:空间向量坐标表示夹角和距离公式问题:在空间直角坐标系中,如何用坐标求线段的长度和两个向量之间的夹角?新知:1. 向量的模:设a,则a 2. 两个向量的夹角公式:设a,b,由向量数量积定义: ab|a|b|cosa,b,又由向量数量积坐标运算公式:ab ,
2、由此可以得出:cosa,b 试试: 当cosa、b1时,a与b所成角是 ; 当cosa、b1时,a与b所成角是 ; 当cosa、b0时,a与b所成角是 ,即a与b的位置关系是 ,用符合表示为 .反思:设a,b,则 a/B. a与b所成角是 a与b的坐标关系为 ; aba与b的坐标关系为 ;3. 两点间的距离公式:在空间直角坐标系中,已知点,则线段AB的长度为:.4. 线段中点的坐标公式:在空间直角坐标系中,已知点,则线段AB的中点坐标为: . 典型例题例1. 如图,在正方体中,点分别是的一个四等分点,求与所成的角的余弦值变式:如上图,在正方体中,求与所成角的余弦值 例2. 如图,正方体中,点E
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 315 空间 向量 运算 坐标 表示 导学案
限制150内