131有理数的加法(1)(修订版教案)-.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《131有理数的加法(1)(修订版教案)-.doc》由会员分享,可在线阅读,更多相关《131有理数的加法(1)(修订版教案)-.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3.1 有理数的加法第1课时 有理数的加法 教学内容 课本第16页至第18页第2行 教学目标 1知识与技能 理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算 2过程与方法 引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力 3情感态度与价值观 培养学生主动探索的良好学习习惯 重、难点与关键 1重点:掌握有理数加法法则,会进行有理数的加法运算 2难点:异号两数相加的法则 3关键:培养学生主动探索的良好学习习惯 教学过程 一、复习提问 1有理数的绝对值是怎样定义的?如何计算一个数的绝对值? 2比较下列每对数的大小 (1)-3和-2
2、; (2)-5和5; (3)-2与-1;(4)-(-7)和-7 二、新授 在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢? 要解决这个问题,先要分别求出它们的净胜球数 红队的净胜球数为:4+(-2); 蓝队的净胜球数为:1+(-1) 这里用到正数与负数的加法 怎样计算4+(-2)呢? 下面借助数轴来讨论有理数的加法 看下面的问题: 一个物体作左右方向的
3、运动,我们规定向左为负、向右为正 (1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么? 我们知道,求两次运动的总结果,可以用加法来解答这里两次都是向右运动,显然两次运动后物体从起点向右运动了8m,写成算式就是:5+3=8 这一运算在数轴上可表示,其中假设原点为运动的起点(如下图) (2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么? 显然,两次运动后物体从起点向左运动了8m,写成算式就是:(-5)+(-3)=-8 这个运算在数轴上可表示为(如下图): (3)如果物体先向右运动5m,再向左运动3m,那么两次运动后物体与起点的位置关系如何?在数轴上我
4、们可知物体两次运动后位于原点的右边,即从起点向右运动了2m(如下图) 写成算式就是:5+(-3)=2 探究: 还有哪些可能情形?请同学们利用数轴,求以下情况时物体两次运动的结果: (4)先向右运动3m,再向左运动5m,物体从起点向_运动了_m要求学生画出数轴,仿照(3)画出示意图 写出算式是:3+(-5)=-2 (5)先向右运动5m,再向左运动5m,物体从起点向_运动了_m 先向右运动5m,再向左运动5m,物体回到原来位置,即物体从起点向左(或向右)运动了0m,因为+0=-0,所以写成算式是:5+(-5)=0 (6)先向左运动5m,再向左运动5m,物体从起点向_运动了_m 同样,先向左边运动5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 131 有理数 加法 修订版 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内