高数同济六版bai-D3习题课.ppt
《高数同济六版bai-D3习题课.ppt》由会员分享,可在线阅读,更多相关《高数同济六版bai-D3习题课.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目录 上页 下页 返回 结束 二、二、 导数应用导数应用习题课一、一、 微分中值定理及其应用微分中值定理及其应用中值定理及导数的应用 第三三章 目录 上页 下页 返回 结束 xyOab)(xfy 拉格朗日中值定理 )()(bfaf一、一、 微分中值定理及其应用微分中值定理及其应用1. 微分中值定理及其相互关系微分中值定理及其相互关系 罗尔定理 0)(fxyOab)(xfy )()()()()()(FfaFbFafbfabafbff)()()(10) 1(! ) 1(1)(nnnxxfxxF)( 泰勒中值定理 )()()(000 xxxfxfxfnnnxxxf)(00)(!10n)()()(bf
2、afxxF 柯西中值定理 目录 上页 下页 返回 结束 2. 微分中值定理的主要应用微分中值定理的主要应用(1) 研究函数或导数的性态(2) 证明恒等式或不等式(3) 证明有关中值问题的结论目录 上页 下页 返回 结束 3. 有关中值问题的解题方法有关中值问题的解题方法利用逆向思维逆向思维 , 设辅助函数 .一般解题方法:(1)证明含一个中值的等式或根的存在 ,(2) 若结论中涉及到含中值的两个不同函数 ,(3) 若结论中含两个或两个以上的中值 ,可用原函数法找辅助函数 .多用罗尔定理罗尔定理,可考虑用柯西中值定理柯西中值定理 .必须多次应用多次应用中值定理中值定理 .(4) 若已知条件中含高
3、阶导数 , 多考虑用泰勒公式泰勒公式 ,(5) 若结论为不等式 , 要注意适当适当放大放大或缩小缩小的技巧.有时也可考虑对导数用中值定理对导数用中值定理 .目录 上页 下页 返回 结束 例例1. 设函数在)(xf),(ba内可导, 且,)(Mxf证明在)(xf),(ba内有界. 证证: 取点, ),(0bax 再取异于0 x的点, ),(bax对xxxf,)(0在以为端点的区间上用拉氏中值定理, 得)()()(00 xxfxfxf)(0之间与界于xx)()()(00 xxfxfxf00)()(xxfxf)()(0abMxfK(定数)可见对任意, ),(bax,)(Kxf即得所证 .目录 上页
4、下页 返回 结束 例例2. 设在)(xf 1 ,0内可导, 且,0) 1 (f证明至少存在一点)(f, ) 1 ,0(使上连续, 在) 1 ,0()(2 f证证: 问题转化为证.0)(2)(ff设辅助函数)()(2xfxx 显然)(x在 0 , 1 上满足罗尔定理条件, 故至, ) 1 ,0(使0)()(2)(2ff即有)(f)(2 f少存在一点目录 上页 下页 返回 结束 例例3.,)(,)(内可导,在,上连续在设babaxf且,0ba 试证存在).(2)(fbaf使, ),(,ba证证: 欲证,2)()(fbaf因 f ( x ) 在 a , b 上满足拉氏中值定理条件,故有),(, )(
5、)()(baabfafbf,)(2上满足柯西定理条件在及又因baxxf),(,2)()()(22bafabafbf将代入 , 化简得故有),(2)(fbaf),(,ba即要证.2)()(22fababf目录 上页 下页 返回 结束 例例4. 设实数满足下述等式naaa,1001210naaan证明方程在 ( 0 , 1) 内至少有一个实根 .010nnxaxaa证证: 令,)(10nnxaxaaxF则可设121012)(nnxnaxaxaxF, 1,0)(,上连续在显然xF且)0(F由罗尔定理知存在一点, ) 1 ,0(使,0)(F即.10010内至少有一个实根),(在nnxaxaa,) 1,
6、0(内可导在,0) 1 (F目录 上页 下页 返回 结束 例例5. 设函数 f (x) 在 0, 3 上连续, 在( 0, 3 )内可导, 且 , 1)3(, 3)2() 1 ()0(ffff使, )3, 0(. 0)(f分析: 所给条件可写为1)3(, 13)2() 1 ()0(ffff(2003考研) 试证必存在 想到找一点 c , 使3)2() 1 ()0()(fffcf证证: 因 f (x) 在0, 3上连续, 所以在 0, 2 上连续, 且在 0, 2 上有最大值 M 与最小值 m, 故Mfffm)2(),1 (),0(Mmfff3)2() 1 ()0(由介值定理, 至少存在一点 使
7、, 2, 0c3)2() 1 ()0()(fffcf1, 1)3()( fcf,)3,(,3,)(内可导在上连续在且ccxf由罗尔定理知, 必存在 . 0)(, )3, 0()3,(fc使目录 上页 下页 返回 结束 ,2)( xf例例6. 设函数在)(xf 1 ,0上二阶可导, ) 1 ()0(ff且证明. 1)( xf证证:, 1,0 x由泰勒公式得)0(f) 1 (f两式相减得221221)()1)()(0 xfxfxf 221221)()1)()(xfxfxf 221221)()1 ()(xfxf 22)1 (xx)1 (21xx 1,0,1x)(xfxxf)( 221)(xf ) 1
8、0() 10()1)()1)()(221 xfxxfxf目录 上页 下页 返回 结束 二、二、 导数应用导数应用1. 研究函数的性态:增减 , 极值 , 凹凸 , 拐点 , 渐近线 ,曲率2. 解决最值问题 目标函数的建立与简化 最值的判别问题3. 其他应用 :求不定式极限 ;几何应用 ;相关变化率;证明不等式 ;研究方程实根等.4. 补充定理 (见下页)目录 上页 下页 返回 结束 设函数)(, )(xgxf在上具有n 阶导数,),(a且) 1,2, 1 ,0()()() 1 ()()(nkagafkk)()()()2()()(axxgxfnn则当ax 时. )()(xgxf证证: 令, )
9、()()(xgxfx则; ) 1, 1 ,0(0)()(nkak)(0)()(axxn利用)(x在ax 处的 n 1 阶泰勒公式得)(x)(xa因此ax 时. )()(xgxf0nnaxn)(!)()(定理定理.目录 上页 下页 返回 结束 的连续性及导函数例例7. 填空题填空题(1) 设函数上连续,在),()(xf的则)(xf其导数图形如图所示,单调减区间为 ;极小值点为 ;极大值点为 .),0(),(21xx),(),0,(21xx21, xx0 x提示提示:)(xf根据的正负作 f (x) 的示意图. 单调增区间为 ;)(xf O2x1xyxOx)(xf1x2x目录 上页 下页 返回 结
10、束 O)(xfx .在区间 上是凸弧 ;拐点为 ),0(),(21xx)0(, 0( ,)(,( ,)(,(2211fxfxxfx提示提示:)()(xfxf 的可导性及根据的正负作 f (x) 的示意图. 形在区间 上是凹弧; 则函数 f (x) 的图 (2) 设函数上可导,在),()(xf的图形如图所示,),(),0,(21xx)(xf O2x1xyx2x)(xf 1x目录 上页 下页 返回 结束 ln)1ln()()(1xxxfxf例例8. 证明在xxxf)1 ()(1),0(上单调增加.证证:)1ln()(ln1xxxfln)1ln(xxx11ln)1ln()11()(xxxxxfx令,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济 bai D3 习题
限制150内