高数同济六版bai-D9_9二元泰勒公式.ppt
《高数同济六版bai-D9_9二元泰勒公式.ppt》由会员分享,可在线阅读,更多相关《高数同济六版bai-D9_9二元泰勒公式.ppt(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目录 上页 下页 返回 结束 *第九节一、二元函数泰勒公式一、二元函数泰勒公式 二、极值充分条件的证明二、极值充分条件的证明 二元函数的泰勒公式 第九章 目录 上页 下页 返回 结束 一、二元函数的泰勒公式一、二元函数的泰勒公式一元函数)(xf的泰勒公式: 20000!2)()()()(hxfhxfxfhxfnnhnxf!)(0)(10) 1(!) 1()(nnhnxxf) 10(推广多元函数泰勒公式 目录 上页 下页 返回 结束 记号记号 (设下面涉及的偏导数连续): ),()(00yxfykxh),()(002yxfykxh),()(00yxfykxhm),(),(0000yxfkyxfh
2、yx表示),(),(2),(00200002yxfkyxfkhyxfhyyyxxx),(C000yxyxfkhpmpmpmpmppm 一般地, 表示表示目录 上页 下页 返回 结束 定理定理1 1.),(),(00yxyxfz在点设的某一邻域内有直到 n + 1 阶连续偏导数 ,),(00kyhx为此邻域内任 一点, 则有),(),(0000yxfkyhxf),()(00yxfkhyx),()(002!21yxfkhyx),()(00!1yxfkhnyxn),()(001! ) 1(1kyhxfkhRnyxnn) 10(nR其中 称为f 在点(x0 , y0 )的 n 阶泰勒公式阶泰勒公式,称
3、为其拉格拉格朗日型余项朗日型余项 .目录 上页 下页 返回 结束 证证: 令),10(),()(00tktyhtxft则 ),() 1 (, ),()0(0000kyhxfyxf利用多元复合函数求导法则可得: ),(),()(0000t kyt hxfkt kyt hxfhtyx),()()0(00yxfkhyx),()(002t kyt hxfhtxx ),(200t kyt hxfkhyx),(002t kyt hxfkyy),()()0(002yxfkhyx 目录 上页 下页 返回 结束 ),(C)(000)(t kyt hxyxfkhtpmpmpmpmppmm一般地, ),()()0(
4、00)(yxfkhmyxm由 )(t的麦克劳林公式, 得 ) 1 ()() 1(! ) 1(1nn) 10(将前述导数公式代入即得二元函数泰勒公式. )0()0()0()0()(!1!21nn 目录 上页 下页 返回 结束 ),()(001! ) 1(1kyhxfkhRnyxnn说明说明:(1) 余项估计式. 因 f 的各 n+1 阶偏导数连续, 在某闭邻域其绝对值必有上界 M , ,22kh 令则有1)(! ) 1(nnkhnMRsincoskh11)sincos(! ) 1(nnnM)1(max2 1 , 0 xx利用11)2(! ) 1(nnnM)(no2目录 上页 下页 返回 结束 (
5、2) 当 n = 0 时, 得二元函数的拉格朗日中值公式:),(),(0000yxfkyhxf),(00kyhxfhx),(00kyhxfky) 10(3) 若函数),(yxfz 在区域D 上的两个一阶偏导数恒为零, .),(常数yxf由中值公式可知在该区域上 定理1目录 上页 下页 返回 结束 例例1. 求函数)0 , 0()1ln(),(在点yxyxf解解: yxyxfyxfyx11),(),(的三阶泰勒公式. 2)1 (1),(),(),(yxyxfyxfyxfyyyxxx333)1 (!2yxyxfpp)3,2, 1 ,0(p444)1 (!3yxyxfpp)4,3,2, 1 ,0(p
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济 bai D9_9 二元 泰勒 公式
限制150内