复变函数-3-6-精品文档资料整理.ppt
《复变函数-3-6-精品文档资料整理.ppt》由会员分享,可在线阅读,更多相关《复变函数-3-6-精品文档资料整理.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六节 高阶导数一、问题的提出二、主要定理三、典型例题四、小结与思考2一、问题的提出一、问题的提出问题问题: :(1) 解析函数是否有高阶导数解析函数是否有高阶导数? (2) 若有高阶导数若有高阶导数, 其定义和求法是否与实变函其定义和求法是否与实变函数相同数相同?回答回答: :(1) 解析函数有各高阶导数解析函数有各高阶导数. (2) 高阶导数的值可以用函数在边界上的值通高阶导数的值可以用函数在边界上的值通过积分来表示过积分来表示, 这与实变函数完全不同这与实变函数完全不同.3二、主要定理二、主要定理定理定理. , )( ), 2 , 1(d)()(2!)( : , )( 0100)(DzD
2、zfCnzzzzfinzfnzfCnn而且它的内部全含于而且它的内部全含于线线任何一条正向简单闭曲任何一条正向简单闭曲的的内围绕内围绕的解析区域的解析区域为在函数为在函数其中其中导数为导数为阶阶它的它的的导数仍为解析函数的导数仍为解析函数解析函数解析函数 4注:注:1.此定理表明一个解析函数的导数仍然是解析此定理表明一个解析函数的导数仍然是解析函数函数.2.高阶导数公式的作用高阶导数公式的作用: 不在于通过积分来求导不在于通过积分来求导, , 而在于通过求导而在于通过求导来求积分来求积分. .( )010( )2d()(1,2,)()nnCf zizfznzzn!5三、典型例题三、典型例题例例
3、1 1解解 CzCzzezzzrzC.d)1()2(;d)1(cos)1( . 1 : ,225为正向圆周为正向圆周其中其中计算下列积分计算下列积分 , 1 )1(cos )1(5处不解析处不解析内内在在函数函数 zCzz , cos 内处处解析内处处解析在在但但Cz Cnnzzzzfinzfd)()(2!)( 100)(根据公式根据公式6 Czzzd)1(cos51)4()(cos)!15(2 zzi;125i , )1( )2(22处不解析处不解析内的内的在在函数函数izCzez 1C2Cxyo iCi , 1CiC为中心作一个正向圆周为中心作一个正向圆周内以内以在在 , 2Ci为中心作一
4、个正向圆周为中心作一个正向圆周以以 , , )1( 2122围成的区域内解析围成的区域内解析在由在由则函数则函数CCCzez 71C2Cxyo iCi 根据复合闭路定理根据复合闭路定理 Czzzed)1(22 21d)1(d)1(2222CzCzzzezze 1d)1(22Czzze 1d)()(22Czzizizeizzizei 2)()!12(2,2)1( iei81C2Cxyo iCi 2d)1( 22Czzze同理可得同理可得,2)1( iei Czzzed)1( 22于是于是 2)1(iei 2)1(iei)(1(2iiieei )1sin1(cos)1(22 i.41sin2 i9
5、例例2 2.dcos)2(;d)1(1(1) 12243 zzzzzzezzz求积分求积分解解 , 1 )1(3在复平面内解析在复平面内解析函数函数 z , 2 10内内在在 zz, 3 n 243d)1(1zzzz131! 32 zzi;2 i Cnnzzzzfinzfd)()(2!)( 100)(根据公式根据公式10 12dcos)2(zzzzze , cos 在复平面内解析在复平面内解析函数函数zez , 1 00内内在在 zz, 1 n 12dcoszzzzze0)cos(! 12 zzzei0sincos2 zzzzezei.2 i 11例例3 3解解) (.d 1为整数为整数求积分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 精品 文档 资料 整理
限制150内