《D2_1导数概念-精品文档资料整理.ppt》由会员分享,可在线阅读,更多相关《D2_1导数概念-精品文档资料整理.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章微积分学的创始人: 德国数学家 Leibniz 微分学导数导数描述函数变化快慢微分微分描述函数变化程度都是描述物质运动的工具 (从微观上研究函数)导数与微分导数思想最早由法国数学家 Ferma 在研究极值问题中提出.英国数学家 Newton目录 上页 下页 返回 结束 一、引例一、引例二、导数的定义二、导数的定义三、导数的几何意义三、导数的几何意义四、函数的可导性与连续性的关系四、函数的可导性与连续性的关系五、单侧导数五、单侧导数第一节第一节导数的概念导数的概念 第二章 目录 上页 下页 返回 结束 sO一、一、 引例引例1. 变速直线运动的速度变速直线运动的速度设描述质点运动位置的函数
2、为)(tfs 则 到 的平均速度为0tt v)()(0tftf0tt 而在 时刻的瞬时速度为0t lim0ttv)()(0tftf0tt 221tgs 自由落体运动0t)(0tf)(tft目录 上页 下页 返回 结束 2. 曲线的切线斜率曲线的切线斜率曲线)(:xfyCNT0 xM在 M 点处的切线x割线 M N 的极限位置 M T(当 时)割线 M N 的斜率tan)()(0 xfxf0 xx 切线 MT 的斜率tanktanlim lim0 xxk)()(0 xfxf0 xx xy)(xfy CO目录 上页 下页 返回 结束 两个问题的共性共性:瞬时速度 lim0ttv)()(0tftf0
3、tt 切线斜率 lim0 xxk)()(0 xfxf0 xx 所求量为函数增量与自变量增量之比的极限 .类似问题还有:加速度角速度线密度电流强度是速度增量与时间增量之比的极限是转角增量与时间增量之比的极限是质量增量与长度增量之比的极限是电量增量与时间增量之比的极限变化率问题NT0 xMxxy)(xfy COsO0t)(0tf)(tft目录 上页 下页 返回 结束 二、导数的定义二、导数的定义定义定义1 . 设函数)(xfy 在点0 x0limxx00)()(xxxfxfxyx0lim)()(0 xfxfy0 xxx存在,)(xf并称此极限为)(xfy 记作:;0 xxy; )(0 xf ;dd
4、0 xxxy0d)(dxxxxf即0 xxy)(0 xf xyx0limxxfxxfx)()(lim000hxfhxfh)()(lim000则称函数若的某邻域内有定义 , 在点0 x处可导可导, 在点0 x的导数导数. 目录 上页 下页 返回 结束 运动质点的位置函数)(tfs 在 时刻的瞬时速度0t lim0ttv)()(0tftf0tt 曲线)(:xfyC在 M 点处的切线斜率 lim0 xxk)()(0 xfxf0 xx )(0tf )(0 xf sO0t)(0tf)(tftNT0 xMxxy)(xfy CO目录 上页 下页 返回 结束 0limxx00)()(xxxfxfxyx0lim
5、)()(0 xfxfy0 xxx不存在, 就说函数在点 不可导. 0 x若0lim,xyx 也称)(xf在0 x若函数在开区间 I 内每点都可导,此时导数值构成的新函数称为导函数.记作:;y;)(xf ;ddxy.d)(dxxf注意注意:)(0 xf 0)(xxxfxxfd)(d0就称函数在 I 内可导. 的导数为无穷大 .若极限目录 上页 下页 返回 结束 例例1. 求函数Cxf)(C 为常数) 的导数. 解解:yxCCx0lim0即0)(C例例2. 求函数)()(Nnxxfn.处的导数在ax 解解:axafxf)()(ax lim)(af axaxnnaxlim(limax1nx2nxa3
6、2nxa)1na1nanxxfxxf)()(0limx目录 上页 下页 返回 结束 说明:说明:对一般幂函数xy ( 为常数) 1)(xx例如,例如,)(x)(21 x2121 xx21x1)(1x11x21x)1(xx)(43x4743x(以后将证明)目录 上页 下页 返回 结束 hxhxhsin)sin(lim0例例3. 求函数xxfsin)(的导数. 解解:,xh令则)(xf hxfhxf)()(0limh0limh)2cos(2hx2sinh)2cos(lim0hxh22sinhhxcos即xxcos)(sin类似可证得xxsin)(cosh目录 上页 下页 返回 结束 )1(lnxh
7、例例4. 求函数xxfln)(的导数. 解解: )(xf hxfhxf)()(0limhhxhxhln)ln(lim0hh1lim0)1(lnxh即xx1)(ln0limhh1x1xx10limh)1(lnxhhxelnx1x1目录 上页 下页 返回 结束 则令,0hxt原式htfhtfh2)()2(lim0)(lim0tfh)(0 xf 是否可按下述方法作:例例5. 证明函数xxf)(在 x = 0 不可导. 证证:hfhf)0()0(hh0h,10h,1hfhfh)0()0(lim0不存在 , .0不可导在即xx例例6. 设)(0 xf 存在, 求极限.2)()(lim000hhxfhxf
8、h解解: 原式0limhhhxf2)(0)(0 xfhhxf2)( 0)(0 xf)(210 xf )(210 xf )(0 xf )( 2 )(0hhxf)(0 xf目录 上页 下页 返回 结束 三、三、 导数的几何意义导数的几何意义曲线)(xfy 在点),(00yx的切线斜率为)(tan0 xf 若,0)(0 xf曲线过上升;若,0)(0 xf曲线过下降;xyO0 x),(00yx若,0)(0 xf切线与 x 轴平行,称为驻点驻点;),(00yx),(00yx0 x若,)(0 xf切线与 x 轴垂直 .曲线在点处的),(00yx切线方程切线方程:)(000 xxxfyy法线方程法线方程:)
9、()(1000 xxxfyy)0)(0 xf,)(0时 xfxyO)(xfy CT0 xMxy0 xO目录 上页 下页 返回 结束 xyO1111例例7. 问曲线3xy 哪一点有铅直切线 ? 哪一点处的切线与直线131xy平行 ? 写出其切线方程.解解:)(3xy3231x,13132x,0 xy0 x令,3113132x得,1x对应,1y则在点(1,1) , (1,1) 处与直线131xy平行的切线方程分别为),1(131xy) 1(131xy即023 yx故在原点 (0 , 0) 有铅直切线目录 上页 下页 返回 结束 处可导在点xxf)(四、四、 函数的可导性与连续性的关系函数的可导性与
10、连续性的关系定理定理1.处连续在点xxf)(证证: 设)(xfy 在点 x 处可导,)(lim0 xfxyx存在 , 因此必有,)(xfxy其中0lim0 x故xxxfy)(0 x0所以函数)(xfy 在点 x 连续 .注意注意: 函数在点 x 连续,但在该点连续,但在该点未必可导未必可导.反例反例:xy xy 在 x = 0 处连续 , 但不可导.即xyO目录 上页 下页 返回 结束 在点0 x的某个右右 邻域内五、五、 单侧导数单侧导数)(xfy 若极限xxfxxfxyxx)()(limlim0000则称此极限值为)(xf在 处的右右 导数导数,0 x记作)(0 xf即)(0 xfxxfx
11、xfx)()(lim000(左)(左左)0( x)0( x)(0 xf0 x例如例如,xxf)(在 x = 0 处有,1)0(f1)0(f定义定义2 . 设函数有定义,存在,xyOxy 目录 上页 下页 返回 结束 定理定理2. 函数在点0 x)(xfy ,)()(00存在与xfxf且)(0 xf. )(0 xf)(0 xf 存在)(0 xf)(0 xf简写为在点处右右 导数存在0 x定理定理3. 函数)(xf)(xf在点0 x必 右右 连续.(左左)(左左)若函数)(xf)(af)(bf与都存在 , 则称)(xf显然:)(xf在闭区间 a , b 上可导,)(baCxf在开区间 内可导,),
12、(ba在闭区间 上可导.,ba可导的充分必要条件是且目录 上页 下页 返回 结束 内容小结内容小结1. 导数的实质:3. 导数的几何意义:4. 可导必连续, 但连续不一定可导;5. 已学求导公式 :6. 判断可导性不连续, 一定不可导.直接用导数定义;看左右导数是否存在且相等. )(C )(x )(sin x )(cosxaxf)(02. axfxf)()(00 )(lnx;0;1x;cosx;sin xx1增量比的极限;切线的斜率;目录 上页 下页 返回 结束 思考与练习思考与练习1. 函数 在某点 处的导数)(xf0 x)(0 xf )(xf 区别:)(xf 是函数 ,)(0 xf 是数值
13、;联系:0)(xxxf)(0 xf 注意注意:有什么区别与联系 ? )()(00 xfxf?与导函数目录 上页 下页 返回 结束 2. 设)(0 xf 存在 , 则._)()(lim000hxfhxfh3. 已知,)0(,0)0(0kff则._)(lim0 xxfx)(0 xf 0k4. 若),(x时, 恒有,)(2xxf问)(xf是否在0 x可导?解解:由题设0)0(f0)0()(xfxfx0由夹逼准则0)0()(lim0 xfxfx0故)(xf在0 x可导, 且0)0( f目录 上页 下页 返回 结束 5. 设0,0,sin)(xxaxxxf, 问 a 取何值时,)(xf 在),(都存在
14、, 并求出. )(xf 解解: 显然该函数在 x = 0 连续 .)0(f00sinlim0 xxx1)0(f00lim0 xxaxa故1a时,1)0( f此时)(xf 在),(都存在, )(xf0,cosxx0,1x目录 上页 下页 返回 结束 作业作业 P86 2 , 5 , 6, 7, 11, 16(2) , 18 , 20 第二节 牛顿牛顿(1642 1727)伟大的英国数学家 , 物理学家, 天文学家和自然科学家. 他在数学上的卓越贡献是创立了微积分. 1665年他提出正流数 (微分) 术 , 次年又提出反流数(积分)术,并于1671年完成流数术与无穷级数一书 (1736年出版).
15、他还著有自然哲学的数学原理和广义算术等 .莱布尼茨莱布尼茨 (1646 1716)德国数学家, 哲学家.他和牛顿同为微积分的创始人 , 他在学艺杂志上发表的几篇有关微积分学的论文中,有的早于牛顿, 所用微积分符号也远远优于牛顿 . 他还设计了作乘法的计算机 , 系统地阐述二进制计数法 , 并把它与中国的八卦联系起来 .目录 上页 下页 返回 结束 备用题备用题 解解: 因为1. 设)(xf 存在, 且, 12)1 () 1 (lim0 xxffx求).1 (f 0(1)(1)1lim2xffxx 所以. 2) 1 ( fxfxfx2) 1 ()1 (lim0)() 1 ()(1 (lim210 xfxfx) 1 (21f 目录 上页 下页 返回 结束 )(xf在 0 x处连续, 且xxfx)(lim0存在, 证明:)(xf在0 x处可导.证证:因为xxfx)(lim0存在, 则有0)(lim0 xfx又)(xf在0 x处连续,0)0(f所以xxfx)(lim0即)(xf在0 x处可导.2. 设xfxfx)0()(lim0)0(f 故
限制150内