高数同济六版bai-D3_6函数图形的描绘.ppt
《高数同济六版bai-D3_6函数图形的描绘.ppt》由会员分享,可在线阅读,更多相关《高数同济六版bai-D3_6函数图形的描绘.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目录 上页 下页 返回 结束 第六节一、一、 曲线的渐近线曲线的渐近线二、二、 函数图形的描绘函数图形的描绘函数图形的描绘 第三三章 目录 上页 下页 返回 结束 2xy 无渐近线 .点 M 与某一直线 L 的距离趋于 0,一、 曲线的渐近线曲线的渐近线定义定义 . 若曲线 C上的点M 沿着曲线无限地远离原点时,则称直线 L 为曲线C 的渐近线渐近线 .例如, 双曲线12222byax有渐近线0byax但抛物线或为“纵坐标差纵坐标差”LbxkyNMOxyC)(xfy POxy目录 上页 下页 返回 结束 1. 水平与铅直渐近线水平与铅直渐近线若,)(limbxfx则曲线)(xfy 有水平渐近线
2、.by )(x或若,)(lim0 xfxx则曲线)(xfy 有铅直渐近线.0 xx )(0 xx或例例1. 求曲线211xy的渐近线 .解解:2)211(limxx2 y为水平渐近线;,)211(lim1xx1 x为铅直渐近线.yxO21目录 上页 下页 返回 结束 2. 斜渐近线斜渐近线有则曲线)(xfy 斜渐近线.bxky)(x或若,0)(limxfx)(bxk 0)(limxbkxxfxx0)(limxfx)(bxk 0)(limxbkxxfx)(limxbxxfkxxxfkx)(lim)(limxkxfbx)(x或)(x或( P76 题题14)目录 上页 下页 返回 结束 例例2. 求
3、曲线3223xxxy的渐近线.解解:,) 1)(3(3xxxy,lim3yx) 1(x或所以有铅直渐近线3x及1x又因xxfkx)(lim32lim22xxxx1)(limxxfbx3232lim22xxxxx22xy为曲线的斜渐近线 .312 xyyxO目录 上页 下页 返回 结束 二、函数图形的描绘二、函数图形的描绘步骤步骤 :1. 确定函数)(xfy 的定义域 ,期性 ;2. 求, )(, )(xfxf 并求出)(xf 及)(xf 3. 列表判别增减及凹凸区间 , 求出极值和拐点 ;4. 求渐近线 ;5. 确定某些特殊点 , 描绘函数图形 .为 0 和不存在的点 ;并考察其对称性及周目录
4、 上页 下页 返回 结束 例例3. 描绘22331xxy的图形.解解: 1) 定义域为, ),(无对称性及周期性.2),22xxy,22 xy,0 y令2,0 x得,0 y令1x得3)xyy y012)0,() 1 ,0()2, 1 (),2(00234(极大)(拐点)32(极小)4)xy1332201123yOx目录 上页 下页 返回 结束 例例4. 描绘方程044)3(2yxyx的图形.解解: 1),) 1(4)3(2xxy定义域为), 1 ( , ) 1 ,(2) 求关键点.)3(2xy4044yxy) 1(223xyxy2) 1(4) 1)(3(xxxy 42048 yxy) 1(24
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济 bai D3_6 函数 图形 描绘
限制150内