2022年长沙市高考数学一模试卷及答案 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年长沙市高考数学一模试卷及答案 .pdf》由会员分享,可在线阅读,更多相关《2022年长沙市高考数学一模试卷及答案 .pdf(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第 1 页(共 33 页)湖南省长沙市高考数学一模试卷(理科)一、选择题:本大题共12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(5 分) 设复数 z1, z2在复平面内的对应点关于实轴对称, z1=1+i, 则 z1z2= ()A2 B2 C 1+i D1i2(5分) 设全集 U=R , 函数 f (x) =lg (| x+1| 1) 的定义域为 A, 集合 B=x| sin x=0,则(?UA)B的子集个数为()A7 B3 C 8 D93 (5 分)函数 f(x)=sin(x + ) ( 0,0 )的图象中相邻对称轴的距离为,若角 的终边
2、经过点,则的值为()ABC 2 D4 (5 分)如图所示的茎叶图(图一)为高三某班50 名学生的化学考试成绩,图(二)的算法框图中输入的ai为茎叶图中的学生成绩,则输出的m,n 分别是()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 33 页第 2 页(共 33 页)Am=38,n=12 Bm=26,n=12 C m=12,n=12 D m=24,n=105 (5 分)设不等式组表示的平面区域为1,不等式( x+2)2+(y2)22表示的平面区域为2, 对于 1中的任意一点 M 和 2中的任意一点 N, | MN|的最小值为()ABC
3、 D6 (5 分)若函数 f(x)=的图象如图所示,则m 的范围为()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 33 页第 3 页(共 33 页)A (, 1)B (1,2)C (0,2) D (1,2)7(5 分) 某多面体的三视图如图所示, 则该多面体各面的面积中最大的是 ()A11 BC D8 (5 分)设等差数列 an的前 n 项和为 Sn,且满足 S20140,S20150,对任意正整数 n,都有 | an| | ak| ,则 k 的值为()A1006 B1007 C1008 D10099 (5 分)已知非零向量, ,
4、满足| =| =4, ( )?()=0,若对每一个确定的, | 的最大值和最小值分别为m, n, 则 mn 的值为 ()A随增大而增大B随增大而减小C是 2 D是 410 (5 分)已知如图所示的三棱锥DABC的四个顶点均在球O 的球面上,ABC和DBC所在平面相互垂直, AB=3,AC=,BC=CD=BD=2 ,则球 O 的表面积为()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 33 页第 4 页(共 33 页)A4 B12C 16D3611 (5 分)已知双曲线C:(a0,b0)的右顶点为 A,O 为坐标原点,以 A 为圆心的圆
5、与双曲线C的某渐近线交于两点P,Q,若PAQ=60 ,且,则双曲线 C的离心率为()ABC D12 (5 分)已知 e 为自然对数的底数,若对任意的x 0,1 ,总存在唯一的 y 1,1 ,使得 x+y2eya=0成立,则实数 a 的取值范围是()A 1,eBC (1,eD二、填空题(每题5 分,满分 20 分,将答案填在答题纸上)13(5 分) 已知 a0,展开式的常数项为15, 则=14 (5 分)设 a,bR,关于 x,y 的不等式 | x|+| y| 1 和 ax+4by8 无公共解,则 ab 的取值范围是15 (5 分)正项数列 an 的前 n 项和为Sn,且(nN*) ,设,则数列
6、 cn 的前 2016 项的和为精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 33 页第 5 页(共 33 页)16 (5 分)已知 F是椭圆 C:+=1的右焦点, P是 C上一点,A(2,1) ,当APF周长最小时,其面积为三、解答题(本大题共5 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17(12 分)ABC中,已知点 D 在 BC边上,且, AB=3()求 AD的长;()求 cosC 18 (12 分)如图,在多面体ABCDEF 中,四边形 ABCD为矩形, ADE ,BCF均为等边三角形, EF AB,EF
7、=AD= AB(1) 过 BD作截面与线段 FC交于点 N, 使得 AF 平面 BDN, 试确定点 N 的位置,并予以证明;(2)在( 1)的条件下,求直线BN与平面 ABF所成角的正弦值19 (12 分)2015 年 7 月 9 日 21时 15 分,台风 “ 莲花” 在我国广东省陆丰市甲东镇沿海登陆,造成165.17 万人受灾, 5.6 万人紧急转移安置, 288 间房屋倒塌,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 33 页第 6 页(共 33 页)46.5 千公顷农田受灾,直接经济损失12.99亿元距离陆丰市 222 千米
8、的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50 户居民由于台风造成的经济损失,将收集的数据分成 0,2000 , (2000,4000 , (4000,6000 ,(6000,8000 , (8000,10000 五组,并作出如下频率分布直方图:()试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表) ;()小明向班级同学发出倡议,为该小区居民捐款现从损失超过4000 元的居民中随机抽出2 户进行捐款援助,设抽出损失超过8000 元的居民为 户,求 的分布列和数学期望;()台风后区委会号召小区居民为台风重灾区捐款,小明调查的50 户居民捐
9、款情况如表,根据表格中所给数据,分别求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并说明是否有 95%以上的把握认为捐款数额多于或少于500 元和自身经济损失是否到 4000 元有关?经济损失不超过4000 元经济损失超过4000 元合计捐款超过500 元a=30b捐款不超过 500 元cd=6合计P(K2k)0.150.100.050.0250.0100.0050.001精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 33 页第 7 页(共 33 页)k2.0722.7063.8415.0246.6357.87910.
10、828附:临界值表参考公式: ,20 (12分)已知抛物线 C的顶点为原点,其焦点F(0,c) (c0)到直线 l:xy2=0 的距离为,设 P 为直线 l 上的点,过点 P 作抛物线 C的两条切线PA ,PB ,其中 A,B为切点(1)求抛物线 C的方程;(2)当点 P(x0,y0)为直线 l 上的定点时,求直线AB的方程;(3)当点 P在直线 l 上移动时,求 | AF| ?| BF| 的最小值21 (12 分)已知函数f(x)=+bex,点 M(0,1)在曲线 y=f(x)上,且曲线在点 M 处的切线与直线 2xy=0垂直(1)求 a,b 的值;(2)如果当 x0 时,都有 f(x)+k
11、ex,求 k 的取值范围请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分. 选精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 33 页第 8 页(共 33 页)修 4-4:坐标系与参数方程 22 (10 分)选修 44;坐标系与参数方程已知曲线 C1的参数方程是(为参数) ,以坐标原点为极点, x 轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是 =2 ,正方形 ABCD的顶点都在 C2上,且 A,B,C,D 依逆时针次序排列,点A 的极坐标为( 2,) (1)求点 A,B,C,D 的直角坐标;(2)设 P为
12、C1上任意一点,求 | PA |2+| PB |2+| PC |2+| PD|2的取值范围 选修 4-5:不等式选讲 23设 f(x)=| x| | 2x1| ,记 f(x) 1 的解集为 M(1)求集合 M;(2)已知 aM,比较 a2a+1 与的大小精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 33 页第 9 页(共 33 页)2018 年湖南省长沙市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(5 分) 设复数 z
13、1, z2在复平面内的对应点关于实轴对称, z1=1+i, 则 z1z2= ()A2 B2 C 1+i D1i【解答】 解:复数 z1,z2在复平面内的对应点关于实轴对称,z1=1+i,所以 z2=1i,z1z2=(1+i) (1i)=2故选: A2(5分) 设全集 U=R , 函数 f (x) =lg (| x+1| 1) 的定义域为 A, 集合 B=x| sin x=0,则(?UA)B的子集个数为()A7 B3 C 8 D9【解答】 解:由 | x+1| 10,得| x+1| 1,即 x2 或 x0A= x| x2 或 x0 ,则?UA= x| 2x0 ;由 sin x=0,得: x=k,
14、kZ,x=k,kZ则 B= x| sin x=0 =x| x=k,kZ ,则(?UA)B= x| 2x0 x| x=k,kZ = 2,1,0 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 33 页第 10 页(共 33 页)(?UA)B的元素个数为 3(?UA)B的子集个数为: 23=8故选: C3 (5 分)函数 f(x)=sin(x + ) ( 0,0 )的图象中相邻对称轴的距离为,若角 的终边经过点,则的值为()ABC 2 D【解答】 解:由题意相邻对称轴的距离为,可得周期 T= ,那么 =2 ,角 的终边经过点,在第一象限即
15、tan=,=故得 f(x)=sin(2x+)则=sin(+)=cos=故选: A4 (5 分)如图所示的茎叶图(图一)为高三某班50 名学生的化学考试成绩,图(二)的算法框图中输入的ai为茎叶图中的学生成绩,则输出的m,n 分别是()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 33 页第 11 页(共 33 页)Am=38,n=12 Bm=26,n=12 C m=12,n=12 D m=24,n=10【解答】 解:由程序框图知:算法的功能是计算学生在50 名学生的化学考试成绩中,成绩大于等于80 的人数,和成绩小于80 且大于等于
16、 60 的人数,由茎叶图得,在50 名学生的成绩中,成绩大于等于80 的人数有 80,80,81,84,84,85,86,89,90,91,96,98,共 12 人,故 n=12,由茎叶图得,在50 名学生的成绩中,成绩小于60 的人数有 43,46,47,48,50,51,52,53,53,56,58,59,共 12 人,则在 50 名学生的成绩中,成绩小于 80 且大于等于 60的人数有 501212=26,故 m=26故选: B5 (5 分)设不等式组表示的平面区域为1,不等式( x+2)2+(y2)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - -
17、-第 11 页,共 33 页第 12 页(共 33 页)22表示的平面区域为2, 对于 1中的任意一点 M 和 2中的任意一点 N, | MN|的最小值为()ABC D【解答】解:不等式组表示的平面区域为1,不等式(x+2)2+(y2)22 表示的平面区域为2,如图:对于 1中的任意一点 M 和 2中的任意一点 N,| MN| 的最小值就是可行域内的点 O与圆的圆心连线减去半径,所以, | MN| 的最小值为:=故选: C6 (5 分)若函数 f(x)=的图象如图所示,则m 的范围为()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共
18、33 页第 13 页(共 33 页)A (, 1)B (1,2)C (0,2) D (1,2)【解答】 解:当 x0 时,f(x)0,2m0,故 m2f (x)=f(x)有两个绝对值大于1 的极值点, mx2=0 有两个绝对值大于1 的解,m1故选: D7(5 分) 某多面体的三视图如图所示, 则该多面体各面的面积中最大的是 ()A11 BC D精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 33 页第 14 页(共 33 页)【解答】 解:由多面体的三视图得:该多面体为如图所示的四棱锥PABCD ,其中底面 ABCD是边长为 1 的
19、正方形,平面 PAD 平面 ABCD ,点 P到平面 ABCD的距离为 1,AB平面 PAD ,ABPA ,PA=,该多面体各面的面积中最大的是PAB的面积:SPAB=故选: C8 (5 分)设等差数列 an的前 n 项和为 Sn,且满足 S20140,S20150,对任意正整数 n,都有 | an| | ak| ,则 k 的值为()A1006 B1007 C1008 D1009【解答】 解:由等差数列的求和公式和性质可得S2014精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 33 页第 15 页(共 33 页)=1007(a100
20、7+a1008)0,a1007+a10080同理由 S20150 可得 2015a10080,可得 a10080,a10070,a10080,且| a1007| | a1008|对任意正整数 n,都有| an| | ak| ,k 的值为 1008故选: C9 (5 分)已知非零向量, , 满足| =| =4, ( )?()=0,若对每一个确定的, | 的最大值和最小值分别为m, n, 则 mn 的值为 ()A随增大而增大B随增大而减小C是 2 D是 4【解答】 解:假设=(4,0) 、 =(2,2) 、 =(x,y) ,()?( )=0,(4x,y)?(2x,2y)=x2+y26x2y+8=0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年长沙市高考数学一模试卷及答案 2022 年长 沙市 高考 数学 试卷 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内