《2022年高一数学定义定理公理公式汇编 2.pdf》由会员分享,可在线阅读,更多相关《2022年高一数学定义定理公理公式汇编 2.pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学必修 1 知识网络123412nxAxBABABAnA()元素与集合的关系:属于()和不属于()( )集合中元素的特性:确定性、互异性、无序性集合与元素( )集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集( )集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若,则,即是 的子集。、若集合中有 个元素,则集合的子集有个,注关系集合集合与集合00(2 -1)23,.4/nAAA B CABBCACABABxBxAABABABABABx xAxBAAAAABBAAB真子集有个。、任何一个集合是它本身的子集,即、对于集合如果,且那么、空集是任何集
2、合的(真)子集。真子集:若且(即至少存在但),则是 的真子集。集合相等:且定义:且交集性质:,运算,/()( )( ) -()/()()()()()()UUUUUUUUA ABBABABAABx xAxBAAAAAABBAABAABBABABBCard ABCard ACard BCard ABC Ax xUxAAC AAC AAUCC AACABC AC B,定义:或并集性质:,定义:且补集性质:,()()()UUUCABC AC BABAxByfBABABAxByfBAB映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素,在集合中都有唯一确定的元素与之对
3、应,那么就称对应:为从集合到集合的一个映射1. 定义:设,是两个非空的数集,如果按某一个确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数与之对应,那么就称对应:A为从集合到集合的一个函函数及其表示函数()(1)(),()()(),1212()()(),12yfxfxfa ba xxbfxfxfxa bfxfxfxa b数。记为定义域2. 函数的三要素值域对应关系解析法3. 函数的表示方法列表法图象法1. 单调性最大值:2. 最值最小值:函数的基本性质3. 奇偶性在区间上,若如,则在上递增 ,如,则在上递减。(),()(2)()(),()()()()(0)()()xxDfxfx
4、fx xDfxyfxfx TfxTfxTTfx定义域,则叫做奇函数,其图象关于原点对称。定义域,则叫做偶函数,其图象关于轴对称。奇偶函数的定义域关于原点对称4. 周期性:在函数的定义域上恒有的常数则叫做周期函数,为周期;的最小正值叫做的最小正周期,简称周期精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 15 页附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数tanyx中()2xkkZ; 6、如果函数是由实际意
5、义确定的解析式,应依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1 配凑法 ;2、换元法 ;3、待定系数法 ;4、解方程组的方法三、函数的值域的常用求法:1、换元法; 2、配方法; 3、判别式法; 4、几何法 ;5、不等式法; 6、单调性法 ;7、直接法四、函数的最值的常用求法:1、配方法; 2、换元法; 3、不等式法;4、几何法; 5、单调性法五、函数单调性的常用结论:1、若( ),( )f xg x均为某区间上的增(减)函数,则( )( )f xg x在这个区间上也为增(减)函数2、若( )f x为增(减)函数,则( )f x为减(增)函数3、若( )f x与( )g x
6、的单调性相同,则( )yf g x是增函数;若( )f x与( )g x的单调性不同,则( )yf g x是减函数。简记为:同增异减 .4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 15 页六、函数奇偶性的常用结论:1、如果一个奇函数在0 x处有定义,则(0)0f,如果一个函数( )yf x既是奇函数又是偶函数,则( )0f x(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数
7、;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数( )yf u和( )ug x复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。一、 1 指数: 运算性质:aaaasrsr,0(a0, r、sQ) aaasrsr,0()(a0, r、sQ) rbababarrr,0,0()(a0, r、sR) . 二、 1对数的性质: 真数 N为 (负数和零无对数) ;01loga;1logaa;对数恒等式:NaNalog ;xaalog .2. 运算性质:(MN)loga _;)NM(loga_;naMlog (n
8、R). 换底公式:bloga .(a0,a 1, b0,c0 ,1c) 推论 1:nabmlog . 2. ?abbaloglog . 3. ?cbbaloglog .表1 指数函数0,1xyaaa对数数函数log0,1ayx aa,()0()(),()()(),(,),( )0,()0()0yfxfxxyfxyfxabfafbyfxabcabfccfxfx零点:对于函数( ) 我们把使的实数叫做函数的零点。定理:如果函数在区间上的图象是连续不断的一条曲线,并且有零点与根的关系那么,函数在区间内有零点。即存在使得这个也是程的根。(反之不成立)关系:方程函数与方程函数的应用()()(1),()(
9、)0,(2)(,);(3)()( )0,()()0,(,)0( )()0,0yfxyfxxabfafbabcfcfccfafcbcxabfcfbacx有实数根函数有零点函数的图象与轴有交点确定区间验证给定精确度;求区间的中点计算;二分法求方程的近似解若则就是函数的零点;若则令(此时零点);若则令(此时零点(,)(4)-,();24cbabab);判断是否达到精确度:即若则得到零点的近似值或否则重复精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 15 页定义域xR0,x值域0,R图象性质过定点(0,1)过定点(1,0)减函数增函数减函数增
10、函数(,0)(1,)(0,)(0,1)xyxy时,时,(,0)(0,1)(0,)(1,)xyxy时,时,(0,1)(0,)(1,)(,0)xyxy时,时,(0,1)(,0)(1,)(0,)xyxy时,时,0ab1 0ab1 三1. 幂函数 的概念:一般地,我们把形如的函数称为幂函数,其中是自变量,是常数;注意:幂函数与指数函数的区别2. 幂函数的 常用 性质: (1)幂函数的图象都过点;(2)当0时,幂函数在0,)上;当0时,幂函数在(0,)上(单调性 ) ;(3)当为奇数时幂函数为奇函数,当为偶数时幂函数为偶函数. 四1 零点存在性定理:如果函数y=f(x) 在区间 a,b上的图象是的一条曲
11、线, 并且有,那么, 函精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 15 页数 y=f(x) 在区间( a,b)内有零点,即存在c(a,b),使得 f(c)=0. 2 定义二分法的概念:对于在区间a,b上连续不断且f(a).f(b)0 的函数y=f(x) ,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection) 给定精度,用二分法求函数( )f x的零点近似值的步骤如下:A确定区间 , a b,验证( )( )0f a f b,给定精度;B. 求区间( , )a
12、 b的中点1x;C. 计算1()f x: 若1()0f x,则1x就是函数的零点;若1( )()0f a f x,则令1bx(此时零点01( ,)xa x) ; 若1() ( )0f xf b,则令1ax(此时零点01(, )xx b) ;D. 判断是否达到精度; 即若|ab, 则得到零点零点值a (或 b) ;否则重复步骤24高中数学必修 2 知识点一、直线与方程(1)直线的倾斜角定义: x轴 正向 与直线 向上方向 之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时 ,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0180(2)直线的斜率定义:倾斜角不是90的直线,它的
13、倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tank。斜率反映直线与轴的倾斜程度。当90,0时,0k;当180,90时,0k;当90时,k不存在。过两点的直线的斜率公式:)(211212xxxxyyk注意下面四点:(1) 当21xx时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关; (3) 以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4) 求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式:)(11xxkyy直线斜率 k,且过点11,yx注意: 当直线的斜率为0时, k=0,直线的方程是y=y1。当直线的斜率为90
14、时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:bkxy,直线斜率为k,直线在y轴上的截距为b两点式:112121yyxxyyxx(1212,xxyy)直线两点11,yx,22, yx截矩式:1xyab其中直线l与x轴交于点( ,0)a,与y轴交于点(0, )b,即l与x轴、y轴的 截距 分别为,a b。一般式:0CByAx(A,B 不全为 0)注意: 1各式的适用范围2特殊的方程如:平行于 x 轴的直线:by( b 为常数);平行于 y 轴的直线:ax(a 为常数);精选学习资料 - - - - - - - - - 名师归纳总结
15、 - - - - - - -第 5 页,共 15 页(5)直线系方程:即具有某一共同性质的直线过两条直线0:1111CyBxAl,0:2222CyBxAl的交点的直线系方程为0222111CyBxACyBxA(为参数),其中直线2l不在直线系中。(6)两直线平行与垂直当111:bxkyl,222:bxkyl时,212121,/bbkkll;12121kkll注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点0:1111CyBxAl0:2222CyBxAl相交 交点坐标即方程组00222111CyBxACyBxA的 一组解 。方程组 无解21/ ll方程组有 无数解
16、1l与2l重合(8)两点间距离公式:设1122(,),A xyB xy,()是平面直角坐标系中的两个点,则222121|()()ABxxyy(9) 点到直线距离公式: 一点00,yxP到直线0:1CByAxl的距离2200BACByAxd(10)两平行直线距离公式0:11CByAxl与0:22CByAxl的距离:2221BACCd二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程222rbyax,圆心ba,,半径为r;(2)一般方程022FEyDxyx当0422FED时,方程表示圆,此时圆心为2,2ED,半径为FEDr4
17、2122当0422FED时,表示一个点;当0422FED时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。 确定一个圆需要三个独立条件,若利用圆的标准方程,需求出 a,b, r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)几何方法 :设直线0:CByAxl,圆222:rbyaxC,圆心baC,到l的距离为22BACBbAad,则有相离与Clrd;精选学习资料 - - - - - - - - - 名师
18、归纳总结 - - - - - - -第 6 页,共 15 页相切与Clrd;相交与Clrd(2)代数方法 :设直线0:CByAxl,圆222:rbyaxC,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有相离与Cl0;相切与Cl0;相交与Cl0注:如果圆心的位置在原点,可使用公式200ryyxx去解直线与圆相切的问题,其中00, yx表示切点坐标,r 表示半径。(3)过圆上一点的切线方程:圆222:ryxC,圆上一点为(x0,y0),则过此点的切线方程为200ryyxx(课本命题 )圆 (x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a
19、)(x-a)+(y0-b)(y-b)= r2(课本命题的推广)4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆221211:rbyaxC,222222:RbyaxC两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当rRd时两圆外离 ,此时有公切线四条;当rRd时两圆外切 ,连心线过切点,有外公切线两条,内公切线一条;当rRdrR时两圆相交,连心线垂直平分公共弦,有两条外公切线;当rRd时,两圆内切,连心线经过切点,只有一条公切线;当rRd时,两圆内含;当0d时,为同心圆。三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定
20、义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类 :以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示 :用各顶点字母,如五棱柱EDCBAABCDE或用对角线的端点字母,如五棱柱AD几何特征 :两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义 :有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类 :以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等精选学习资料 - - - - - - - - - 名师
21、归纳总结 - - - - - - -第 7 页,共 15 页表示 :用各顶点字母,如五棱锥EDCBAP几何特征 :侧面、 对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类 :以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示 :用各顶点字母,如五棱台EDCBAP几何特征 :上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱:定义 :以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征 :底面是全等的圆;母线与轴平行;轴与底面
22、圆的半径垂直;侧面展开图是一个矩形。(5)圆锥:定义 :以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征 :底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征: 上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征: 球的截面是圆;球面上任意一点到球心的距离等于半径。2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右) 、俯视图(从上向下)注:正
23、视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图斜二测画法斜二测画法特点:原来与 x 轴平行的线段仍然与x 平行且长度不变;原来与 y 轴平行的线段仍然与y 平行,长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(h 为高,h为斜高, l 为母线)rhS2圆柱侧;rlS圆锥侧面积;lRrS)(圆台侧面积lrrS2圆柱表;lrrS圆锥表;22RRlrlrS圆台
24、表(3)柱体、锥体、台体的体积公式VSh柱;13VSh锥;1()3VSSSS h台精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 15 页(4)球体的表面积和体积公式:V球=343R; S球面=24R4、空间点、直线、平面的位置关系(1)平面 平面的概念:A.描述性说明;B.平面是无限伸展的; 平面的表示:通常用希腊字母、表示,如平面(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。 点与平面的关系:点 A 在平面内,记作A;点A不在平面内,记作A点与直线的关系:点 A 的直线 l 上,记作: A l;点 A 在直线
25、 l 外,记作Al;直线与平面的关系:直线 l 在平面内,记作 l;直线 l 不在平面内,记作l。(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)应用: 检验桌面是否平;判断直线是否在平面内用符号语言表示公理1:,Al Bl ABl(3)公理 2:经过不在同一条直线上的三点,有且只有一个平面。推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理 2 及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据(4)公理 3: 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共
26、直线符号: 平面和相交,交线是 a,记作 a。符号语言:,PABABl PlII公理 3 的作用:它是判定两个平面相交的方法。它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理 4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 异面直线所成角:直线 a、b 是异面直线, 经过空间任意一点O,分别引直线a a,b b,则把直线a 和 b 所成
27、的锐角(或直角)叫做异面直线a 和 b 所成的角。两条异面直线所成角的范围是( 0, 90 ,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明 : (1)判定空间直线是异面直线方法:根据异面直线的定义;异面直线的判定定理(2)在异面直线所成角定义中,空间一点O 是任取的,而和点O 的位置无关。求异面直线所成角步骤:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 15 页A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角(7)等
28、角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系直线在平面内 有无数个公共点三种位置关系的符号表示:aa A a(9)平面与平面之间的位置关系:平行没有公共点;相交有一条公共直线。 b 5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相
29、交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行) ,(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行面面平行) ,(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。 (面面平行线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。线面垂直: 如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面
30、垂直。平面和平面垂直:如果两个平面相交,所成的二面角 (从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理: 如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一精选学习资料 - - - - - - - - - 名师归纳总结 - - -
31、- - - -第 10 页,共 15 页个平面。9、空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为0 。两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b 平行的直线ba ,,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。(2)直线和平面所成的角平面的平行线与平面所成的角:规定为0。平面的垂线与平面所成的角:规定为90。平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。求斜线与平面所成角的思路类似于求异面直
32、线所成角:“一作,二证,三计算”。在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线; (2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角二面角的定义: 从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。二面角的平面角:以二面角的棱上任意一点为顶点,在两个 面内分别作 垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么
33、这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法: 已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角7、空间直角坐标系(1)定义 :如图,,OBCDD A B C是单位正方体. 以 A为原点,分别以 OD,O,A,OB 的方向为正方向,建立三条数轴x轴.y 轴.z 轴。这时建立了一个空间直角坐标系Oxyz. 1)O叫做坐标原点 2 ) x 轴, y 轴, z 轴叫做坐标轴. 3 )过每两个坐标轴的平面叫做坐标面。(2)右手表示法:令右手大拇指、
34、食指和中指相互垂直时,可能形成的位置。大拇指指向为 x 轴正方向, 食指指向为y 轴正向, 中指指向则为z 轴正向, 这样也可以决定三轴间的相位置。(3)任意点坐标表示:空间一点M 的坐标可以用有序实数组( , , )x y z来表示,有序实数组( , , )x y z叫做点 M在此空间直角坐标系中的坐标,记作( , , )M x y z(x 叫做点 M的横坐标,y 叫做点 M的纵坐标, z 叫做点 M的竖坐标)(4)空间两点距离坐标公式:212212212)()()(zzyyxxd高中数学必修4 知识点精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -
35、第 11 页,共 15 页正角: 按逆时针方向旋转形成的角1、任意角 负角: 按顺时针方向旋转形成的角零角: 不作任何旋转形成的角2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角第一象限角的集合为36036090 ,kkkooo第二象限角的集合为36090360180 ,kkkoooo第三象限角的集合为360180360270 ,kkkoooo第四象限角的集合为360270360360 ,kkkoooo终边在x轴上的角的集合为180 ,kko终边在 y轴上的角的集合为18090 ,kkoo终边在坐标轴上的角的集合为90 ,kko3、与角终边相同的角的集合
36、为360,kko4、已知是第几象限角, 确定*nn所在象限的方法: 先把各象限均分n等份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为n终边所落在的区域5、长度等于半径长的弧所对的圆心角叫做1弧度6、 半径为r的圆的圆心角所对弧的长为 l , 则角的弧度数的绝对值是lr7、弧度制与角度制的换算公式:2360o,1180o,180157.3oo8、若扇形的圆心角为为弧度制,半径为r,弧长为 l ,周长为 C ,面积为 S,则 lr,2Crl ,21122Slrr 9、设是一个任意大小的角,的终边上任意一点的坐标是, x y ,它与原点精选学习资料 -
37、- - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 15 页PxyAOMT的距离是220r rxy,则 sinyr, cosxr, tan0yxx10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正11、三角函数线: sin, cos, tan12、同角三角函数的基本关系:221 sincos12222sin1cos,cos1 sin;sin2tancossinsintancos,costan13、三角函数的诱导公式:1 sin 2sink, cos 2cosk, tan 2tankk2 sinsin,cosc
38、os, tantan3 sinsin, coscos, tantan4 sinsin, coscos, tantan口诀:函数名称不变,符号看象限5 sincos2,cossin26 sincos2,cossin2口诀:正弦与余弦互换,符号看象限14、函数sin0,0yx的性质:振幅:;周期:2;频率:12f;相位:x;初相:函数sinyx,当1xx时,取得最小值为miny;当2xx时,取得精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 15 页最大值为maxy,则maxmin12yy,maxmin12yy,21122xxxx15、正
39、弦函数、余弦函数和正切函数的图象与性质:sinyxcosyxtanyx图象定义域RR,2x xkk值域1,11,1R最值当22xkk时 ,max1y;当22xkk时,min1y当2xkk时,max1y;当2xkk时,min1y既无最大值也无最小值周期性22奇偶性奇函数偶函数奇函数函数性质精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 15 页单调性在2,222kkk上是增函数; 在32,222kkk上是减函数在2,2kkk上是增函数;在 2,2kkk上是减函数在,22kkk上是增函数对称性对称中心,0kk对称轴2xkk对称中心,02kk对称轴 xkk对称中心,02kk无对称轴16、向量:既有大小,又有方向的量数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度零向量:长度为0的向量单位向量:长度等于1个单位的向量平行向量(共线向量) :方向相同或相反的非零 向量零向量与任一向量平行相等向量:长度相等且方向相同 的向量17、向量加法运算:三角形法则的特点:首尾相连平行四边形法则的特点:共起点精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 15 页
限制150内