人教出版五年级下册数学教学方针教育材料全册整编汇总版.doc
-#摇。第一单元 图形的变换单元教学计划:教学内容:活动主题一:图形的变换活动主题二:图案设计活动主题三:数学欣赏教学目标:1、通过观察、操作、想象,经历一个简单图形经过平移、旋转或轴对称制作复杂图形的过程,能有条理地表达图形的变换过程,发展空间观念。2、经历运用平移、旋转或轴对称进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案。3、结合欣赏和设计美丽图案,感觉图形世界的神奇。教学重点、难点:在操作中发展学生的空间观念。准备教具:1、挂图;2、方格纸;3、七巧板;4、作图工具授课时数:约6课时第一课时(1)教学内容:轴对称教学目标:1、 使学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。 2、 进一步认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把简单图形旋转90。 3、 初步学会运用对称、平移和旋转的方法在方格纸上设计图案,进一步增强空间观念。 4、 让学生在上述活动中,欣赏图形变换所创造出的美,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。教学重难点:重点:掌握轴对称图形的特征和性质,学会画出轴对称图形。难点:进一步理解和掌握图形旋转的特征和性质,能在方格纸上把简单图形旋转90。 教学过程:一、复习引入:(1)欣赏下面的图形,并找出各个图形的对称轴。(2)学生相互交流 二:新课 你们还见过哪些轴对称图形?(1)轴对称图形的概念: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。(2)通过例题探究轴对称图形的性质: 例题1: 同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。学生交流 教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。三、课内练习。 1判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。四、教学画对称图形。例题2:(1)引导学生思考: A、怎样画?先画什么?再画什么? B、每条线段都应该画多长?(2) 在研究的基础上,让学生用铅笔试画。(3) 通过课件演示画的全过程,帮助学生纠正不足。随堂检测:1、旋转和平移都只是改变图形的( )。A、大小 B、形状 C、位置 D、方向2、同学们利用几何学中的( )、( )和( )变换,设计出许多美丽的图案。板书设计: 轴对 称如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。教学反思:第二课时(2)教学目标:1、使学生进一步认识图形的轴对称现象,探索成轴对称的图形的特征和性质。2、培养学生的空间想象力和思维能力,使学生学会画轴对称图形的另一半,能够在方格纸上画出一个图形的轴对称图形。3、使学生在活动中,欣赏图形变换所创造出的美,进一步感受对称在生活中的应用,体会数学的价值。教学重、难点:重点:探索轴对称的图形的特征和性质。难点:学会画出轴对称图形。教学过程: 一、导入 课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。游乐园里各种游乐项目的运动变化相同吗? 你能根据他们不同的运动变化分分类吗?在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。今天我们就一起来学习“旋转”。板书课题。 二、学习新课1、生活中的平移。平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。你们想亲身体验一下平移吗? 全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?2、生活中的旋转:你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)旋转就是物体绕着某一个点或轴运动。 “你见过哪些旋转现象?”先说给同桌听听,然后汇报。像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!3学习例题3:(1)与学生共同完成其中的一道题,余下的由学生独立完成。(2)对于有错误的学生,在全班进行讲评。4学习例题4: (1) 引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。(2)先让学生说一说画图的步骤,再来画图。(3)让学生学会先选择几个点,把位置定下来,再来画图。(4)课件演示画图过程,并帮助学生订正。五、随堂检测:1 假如一个图形对折后左右能( ),我们就把它叫做( )图形。轴对称图形对折后都有一条折痕,折痕所在的这条直线,我们就叫做这个轴对称图形的( )。2 图形转换的基本方式有( )、( )和( )。、3 明确旋转要说明( )、( )和( )。板书设计:旋 转 顺时针 绕中心点O 方向 角度 (固定)逆时针 时针绕点O 顺时针 旋转30度 时针绕点O 顺时针 旋转60度 时针绕点O 顺时针 旋转90度 三角形点O 逆时针 旋转90度 六 教后反思 第三课时(3)教学目标:1、进一步认识图形的旋转变换,探索它的特征和性质。2、能在方格纸上将简单的图形旋转90。3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。教学重、难点:重点:1、理解图形旋转变换的含义。2、探索图形旋转的特征和性质。难点:掌握把一个图形旋转90。的方法。教学准备:幻灯片、课件。 教学过程一、情境导入利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。二、学习新课(一)图案欣赏:1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?2、让学生尽情发表自己的感受。(二)说一说: 1、上面每幅图的图案是由哪个图形平移或旋转得到的? 2上面哪幅图是对称的?先让学生边观察讨论,再进行交流。三、作业设计(一)反馈练习:完成第8页3题。1、这个图案我们应该怎样画?2、仔细观察这几个图案是由哪个图形经过什么变换得到的? (二)拓展练习:1、分别利用对称、平移和旋转创作一个图案。2、 交流并欣赏。说一说好在哪里?四、全课总结对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。 随堂检测:板书设计:对称、平移和旋转知识有广泛的应用。教学反思:第四课时(4)教学目标:1、通过收集图案,小组交流,感受图案的美,并为自己以后创作图案提供借鉴。2、通过欣赏图案,发展学生的审美意识和空间观念。3、自己经历创作实践的整个过程,感受创作的乐趣,进一步培养学生的审美情趣。教学重点:进一步利用对称、平移、旋转等方法绘制精美的图案。难点:加深感受图形的内在美,培养学生的审美情趣。教学准备:课件、方格纸、正方形白板纸、手工纸三张及剪刀等一、展览导入课前让学生收集图案,以小组为单位进行交流。思考:这些图案是怎样设计的,它有什么特点?指名介绍本组中最美的图案,并结合思考说一说它的特点。二、学习新课(一)尝试创造:让学生做第8页第1、2题。1、鼓励学生用学过的图形设计图案,对不同的学生提出不同的要求。2、交流时,教师对有创意、绘图美观的同学给予表扬和激励。(二)设计图案:做第10页“实践活动”7题。1、 提出三个步骤:(1)先选择一个喜欢的图形;(2)再确定你选用的对称、平移和旋转的方法;(3)动手绘制图案。2、分别利用对称、平移和旋转创作一个图案后,全班交流。三、随堂检测:(一)反馈练习: 1、制作“雪花”:取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。2作品展示。3、独立观察并尝试做第9页第5题。 全班交流各自的作品,选出好的作品互相评价,全班展览。 板书设计:板书设计: 旋 转平移和旋转都是物体或图形的位置变化。平移就是物体沿直线移动。旋转就是物体绕着某一个点或轴运动教后反思: 第五课时(5)教学目标: 1通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;2掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴3培养和发展学生的实验操作能力,发现美和创造美的能力。重点:会利用轴对称的知识画对称图形。难点:平面图形的轴对称情况,能正确地找出其对称轴 教学准备:幻灯片、课件。 教学设计一、 出示课题,教学目标1通过欣赏与设计图案,进一步熟悉已学过的对称、平移、旋转等现象。2欣赏美丽的对称图形,并能自己设计图案。二、出示自学指导认真看课本说一说:1、上面每幅图的图案是由哪个图形平移或旋转得到的?2上面哪幅图是对称的?先让学生边观察讨论,再进行交流。三、学生看书,自学四、效果检测(一)反馈练习:完成第8页3题。1、这个图案我们应该怎样画?2、仔细观察这几个图案是由哪个图形经过什么变换得到的?(二)拓展练习:1、分别利用对称、平移和旋转创作一个图案。2、 交流并欣赏。说一说好在哪里?五、全课总结对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。随堂检测:教材第9页第5题。板书设计:轴对称把一个图形沿着一条直线折叠后,两边的图形可以完全重合,那么这个图形就是轴对称图形,这条直线就是对称轴。画法:先找对称点,再把对称点连接起来。教学反思:第六课时(6)教学目标:1、进一步认识图形的旋转变换,探索它的特征和性质。2、能在方格纸上将简单的图形旋转90。3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。教学重、难点:重点:1、理解图形旋转变换的含义。2、探索图形旋转的特征和性质。难点:掌握把一个图形旋转90。的方法。教学准备:投影仪,课件,主题图。教学过程设计:一、创设游戏情境,引入新课互动游戏师:同学们,喜欢玩游戏吗?玩过掌中宝游戏机吗?都玩过什么游戏?生举例。师:今天,老师给大家带来一个游戏,想玩吗? 出示:“俄罗斯方块”游戏画面一 (图略) 师:如果现在让你来玩,你准备怎么操作?生:把黄色的图形顺时针旋转90。,放在右边的角落。师:用手示范一下怎样就是顺时针旋转呢?生示范。师:(用手做出示范)那与之相反的是什么旋转呢?生:逆时针旋转。(出示动画:黄色图形顺时针旋转90。后下落)1、揭示课题师:刚才,我们在玩游戏的过程中,大家几次提到了一个词“旋转”。这节课,我们就来研究“旋转”。板书课题。2、联系生活师:生活中,你还见过哪些旋转现象?生:风扇、陀螺、旋转木马、钟表、车轮(出示动画:几种旋转现象)师:生活中像这样的旋转现象很多,我们就从与我们关系最密切地钟表开始研究吧!二、认识图形的旋转,探索图形旋转的特征与性质(一)认识线段的旋转,理解旋转的含义1、观察、描述旋转现象出示:钟表师:请同学们仔细观察指针的旋转过程。出示动画:(指针从12指向1)师:谁能用一句话完整地描述一下刚才的这个旋转过程?(教师引导学生叙述完整)生:指针 从“12” 绕点O 顺时针旋转30。到“1”。板书:指针 从“12” 绕点O 顺时针旋转 30。到“1”(出示动画:指针从1指向3)师:这次指针又是如何旋转的?生:指针 从“1” 绕点O 顺时针旋转60。到“3”。(出示动画:指针从3指向6)师:同桌互相说一说。师:如果指针从“6”继续绕点O顺时针旋转180。会指向几呢?生:12(出示动画:指针从6指向12)2、小结,明确旋转的要素师:我们描述了这么多旋转现象,想想看,要想把一个旋转现象描述清楚,应该说哪些方面?生:旋转物体、起止位置、绕哪一点、旋转方向、旋转的度数三:小结通过观察,我们发现风车旋转后,不仅是每个三角形都绕点O逆时针旋转了90。(闪烁),而且,每条线段(闪烁),每个顶点(闪烁),都绕点O逆时针旋转了90。我们在画一个旋转图形时,首先要确定它围绕的点,然后找到这个图形各个点的对应点,最后连线。板书设计:对称、平移和旋转的画法随堂检测:下面请同学们小组合作,共同来解决报告单上提出的问题。(1)从图1到图2,风车绕点O逆时针旋转了度。(2)你是怎样判断风车旋转的角度的?(3)图1到图2,风车绕点O逆时针旋转了90。;(4) 根据三角形变换的位置判断风车旋转的角度;(5) 根据对应的线段判断风车旋转的角度;(6) 根据对应的点判断风车旋转的角度。板书设计:教学反思:第一单元小结轴对称图形对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2 剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。三、想办法做出以各轴对称图形、并分组展示自己的作品。这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。第二单元 因数和倍数单元教学计划教学内容:1因数和倍数2。2. 2、5、3的倍数的特征。3质数和合数教学目标1使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。2使学生通过自主探索,掌握2、5、3的倍数的特征。3逐步培养学生的数学抽象能力。授课时数:约8课时第一课时(7)课题:因数和倍数 教学目标:1、学生掌握找一个数的因数,倍数的方法;2、学生能了解一个数的因数是有限的,倍数是无限的;3、能熟练地找一个数的因数和倍数;4、培养学生的观察能力。教学重点:掌握找一个数的因数和倍数的方法。教学难点:能熟练地找一个数的因数和倍数。教学过程:一、引入新课。1、出示主题图,让学生各列一道乘法算式。2、师:看你能不能读懂下面的算式?出示:因为26=12所以2是12的因数,6也是12的因数;12是2的倍数,12也是6的倍数。3、师:你能不能用同样的方法说说另一道算式?(指名生说一说) 师:你有没有明白因数和倍数的关系了? 那你还能找出12的其他因数吗?4、你能不能写一个算式来考考同桌?学生写算式。师:谁来出一个算式考考全班同学?5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数) 齐读p12的注意。二、新授:(一)找因数:1、出示例1:18的因数有哪几个?从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?学生尝试完成:汇报(18的因数有: 1,2,3,6,9,18)师:说说看你是怎么找的?(生:用整除的方法,18118,1829,1836,184;用乘法一对一对找,如11818,2918)师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。2、用这样的方法,请你再找一找36的因数有那些?汇报36的因数有: 1,2,3,4,6,9,12,18,36师:你是怎么找的?举错例(1,2,3,4,6,6,9,12,18,36)师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)仔细看看,36的因数中,最小的是几,最大的是几?看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。3、你还想找哪个数的因数?(18、5、42)请你选择其中的一个在自练本上写一写,然后汇报。4、其实写一个数的因数除了这样写以外,还可以用集合表示:如 18的因数小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。(二)找倍数:1、我们一起找到了18的因数,那2的倍数你能找出来吗?汇报:2、4、6、8、10、16、师:为什么找不完?你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、)那么2的倍数最小是几?最大的你能找到吗?2、让学生完成做一做1、2小题:找3和5的倍数。汇报 3的倍数有:3,6,9,12 师:这样写可以吗?为什么?应该怎么改呢?改写成:3的倍数有:3,6,9,12, 你是怎么找的?(用3分别乘以1,2,3,倍) 5的倍数有:5,10,15,20,师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示 2的倍数 3的倍数 5的倍数 师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)三、课堂小结:我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?随堂检测:完成练习二14题板书设计:因数和倍数一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数教后反思:第二课时(8)课题:因数和倍数2教学目标:1、学生掌握找一个数的因数,倍数的方法;2、学生能了解一个数的因数是有限的,倍数是无限的;3、能熟练地找一个数的因数和倍数;4、培养学生的观察能力。教学重点:掌握找一个数的因数和倍数的方法。教学难点:能熟练地找一个数的因数和倍数。教学设计:一、出示课题,学习目标1、掌握找一个数的因数,倍数的方法;2、了解一个数的因数是有限的,倍数是无限的;3、能熟练地找一个数的因数和倍数;二、出示自学指导认真看课本主题图,找出12的其他因数任何一个数的因数,最小的一定是( ),而最大的一定是( )。完成做一做1、2小题:找3和5的倍数。(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)三、学生看书,自学四、效果检测我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?五、作业设计:完成练习二14题板书设计:因数和倍数一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数教学反思:第三课时(9)课题:2、5的倍数的特征教学目标:1、掌握 2 、 5 倍数的特征 2、理解并掌握奇数和偶数的概念。 3、能运用这些特征进行判断。4、培养学生的概括能力。 教学重点: 2 、5 倍数的数的特征。难点:奇数和偶数的概念。 教学用具:投影片。 教学过程:一、复习准备1、提问。 说出 20 的全部因数。 说出 5 个 8 的倍数。 26 的最小因数是几?最大因数是几?最小的倍数是几? 2、按要求在集合圈里填上数。二、 学习新课: (一)2 的倍数的特征。 1、教师:(练习 2) 右边集合圈里的数与左边圈里的数是什么关系? 教师:请观察右边圈里的数,它们的个位数有什么特点? ( 个位上是 0,2,4,6,8。) 教师:请再举出几个2的倍数,看看符不符合这个特点? 学生随口举例。 教师:谁能说一说是2的倍数的数的特征? 学生口答后老师板书:个位上是 0,2,4,6,8的数,都是2的倍数。 2、口答练习:(投影片)请把下面的数按要求填在圈内(是2的倍数,不是2的倍数) 1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。 学生口答完后,老师介绍:奇数和偶数的定义 板书:上面两个集合圈上补写出 “ 偶数 ”,“ 奇数 ”。 教师:上面两个集合圈里该不该打省略号?为什么? 学生讨论后老师说明: 在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。 教师:奇数、偶数在我们日常生活中你遇到过吗?习惯上称它们为什么数? (单数、双数。) 3、练习:( 先分小组小说,再全班统一回答。) 说出5个2的倍数。(要求:两位数。) 说出3个不是2的倍数的三位数。 说出 15 35 以内的偶数。 50以内的偶数有多少个?奇数有多少个? (二)5 的倍数的特征。 1、教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究2的倍数的特征的相同方法,找出 5 的倍数的特征? 学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。 教师:说一说5的倍数的特征? 教师:请举几个多位数验证。 教师:再说一说什么样的数是5的倍数。 板书:个位上是0或者5的数,都是5的倍数。2、练习: 按从小到大的顺序,说出50以内5的倍数。 (投影片)下面哪些数是5的倍数? 240,345,431,490,545,543,709,725,815,922,986,990。 (投影片)从下面的数中挑出既是2的倍数,又是5的倍数的数。这些数有什么特点? 12,25,40,80,275,320,694,720,886,3100,3125,3004。 学生口答后教师板书:个位数字是 0 。 教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。 随堂检测: 1 、在150的自然数中,2的倍数有( )个,5的倍数数有( )个。 2 、比75小,比50大的奇数有( )。 3 、个位是( )的数同时是2和5的倍数。 4 、用 0 , 7 , 4 , 5 , 9 五个数字组成 2的倍数;5的倍数;同时是 2 和 5 的倍数的数。 四、全课总结:这节课你学会了什么?有什么收获?板书设计:2 、5 倍数的特征 个位上是 0,2,4,6,8的数,都是2的倍数。个位上是0或者5的数,都是5的倍数。教学反思:第四课时(10 )课题:2、5的倍数的特征2教学目标:1、掌握 2 、5 倍数的特征2、理解并掌握奇数和偶数的概念。3、能运用这些特征进行判断。4、培养学生的概括能力。重点和难点:1、是2 、5 倍数的数的特征。2、奇数和偶数的概念。教学设计:一、出示课题,学习目标1、掌握 2 、 5 倍数的特征2、理解并掌握奇数和偶数的概念。3、能运用这些特征进行判断。二、出示自学指导认真看课本观察(一)2 的倍数的特征。(二)5 的倍数的特征。三、学生看书,自学四、效果检测(一)谁能说一说是2的倍数的数的特征?板书:个位上是 0,2,4,6,8的数,都是2的倍数。介绍:奇数和偶数的定义说明:在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。(二)说一说5的倍数的特征?板书:个位上是0或者5的数,都是5的倍数。随堂检测:1 、在1100的自然数中,2和3和5的倍数有( )个。2 、比65小,比40大的奇数有( )。3 、个位是( )的数同时是2和5的倍数。4 、用 0 , 6, 4 , 5 , 四个数字中任选三个组成 2的倍数( )5的倍数( )同时是 2 和 5 的倍数的数( )六、全课总结:这节课你学会了什么?有什么收获?板书设计:2 、5 倍数的特征 个位上是 0,2,4,6,8的数,都是2的倍数。个位上是0或者5的数,都是5的倍数。教后反思:第五课时(11)课题:3的倍数的特征教学目标:1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。 2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。教学重点:是3的倍数的数的特征难点:是3的倍数的数的特征。教学过程:一、提出课题,寻找3的特征。 师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下? 生1:个位上是3、6、9的数是3的倍数。生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)二、自主探索,总结3的特征师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图) 师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。学生同桌交流后,再组织全班交流。生1:我发现10以内的数只有3、6、9是3的倍数。生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上09这十个数字都有可能。师:个位上的数字没有什么规律,那么十位上的数有规律吗?生:也没有规律,19这些数字都出现了。师:其他同学还有什么发现吗?生:我发现3的倍数按一条一条斜线排列很有规律。师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。师:这是一个重大发现,其他斜线呢?生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。师:现在谁能归纳一下3的倍数有什么特征呢?生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。学生先自己写数并验证,然后小组交流,得出了同样的结论。全班齐读书上的结论。随堂检测:完成p19做一做四、课堂小结: 这节课你有什么收获板书设计:3的倍数特征3的倍数什么特征教后反思:第六课时(12)课题:3的倍数的特征2教学目标:1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。教学重点3的倍数的数有什么特征难点:如何判断一个数是3的倍数教学设计:一、提出课题,寻找3的倍数特征。师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)二、自主探索,总结3的倍数特征师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。学生同桌交流后,再组织全班交流。学生先自己写数并验证,然后小组交流,得出了同样的结论。全班齐读书上的结论。随堂检测:完成p19做一做板书设计:3的倍数特征3的倍数什么特征教后反思:第七课时(13)课题:质数和合数教学目标: 1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养学生自主探索、独立思考、合作交流的能力。3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。教学重点:1、理解掌握质数、合数的概念。2、初步学会准确判断一个数是质数还是合数。教学难点:区分奇数、质数、偶数、合数。教学过程:一、探究发现,总结概念:1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?学生独立思考,然后全班交流。2、师:这样的四个小正方形能拼出几个不同的长方形?学生各自独立思考,想像后举手回答。3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形? 师:我看到许多同学不用画就已经知道了。(指名说一说)4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数,你觉得会怎么样? 学生几乎是异口同声地说:会越多。 师:确定吗?(引导学生展开讨论。)5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。 先让学生小组讨论,然后全班交流,师根据学生的回答板书。 师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?学生独立思考后,在小组内进行交流,然后再全班交流。引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。7、师:那你们
收藏
编号:2708396
类型:共享资源
大小:645.50KB
格式:DOC
上传时间:2020-04-30
17
金币
- 关 键 词:
-
出版
年级
下册
数学
教学
方针
教育
材料
整编
汇总
- 资源描述:
-
-#
摇。
第一单元 图形的变换
单元教学计划:
教学内容:
活动主题一:《图形的变换》活动主题二:《图案设计》活动主题三:《数学欣赏》
教学目标:
1、通过观察、操作、想象,经历一个简单图形经过平移、旋转或轴对称制作复杂图形的过程,能有条理地表达图形的变换过程,发展空间观念。
2、经历运用平移、旋转或轴对称进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案。
3、结合欣赏和设计美丽图案,感觉图形世界的神奇。
教学重点、难点:在操作中发展学生的空间观念。
准备教具:1、挂图;2、方格纸;3、七巧板;4、作图工具
授课时数:约6课时
第一课时(1)
教学内容:
轴对称
教学目标:
1、 使学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。
2、 进一步认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把简单图形旋转90。
3、 初步学会运用对称、平移和旋转的方法在方格纸上设计图案,进一步增强空间观念。
4、 让学生在上述活动中,欣赏图形变换所创造出的美,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。
教学重难点:
重点:掌握轴对称图形的特征和性质,学会画出轴对称图形。
难点:进一步理解和掌握图形旋转的特征和性质,能在方格纸上把简单图形旋转90。
教学过程:
一、复习引入:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流
二:新课
你们还见过哪些轴对称图形?
(1)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(2)通过例题探究轴对称图形的性质:
例题1:
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
三、课内练习。
1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
四、教学画对称图形。
例题2:
(1)引导学生思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
(2) 在研究的基础上,让学生用铅笔试画。
(3) 通过课件演示画的全过程,帮助学生纠正不足。
随堂检测:
1、旋转和平移都只是改变图形的( )。
A、大小 B、形状 C、位置 D、方向
2、同学们利用几何学中的( )、( )和( )变换,设计出许多美丽的图案。
板书设计:
轴对 称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
教学反思:
第二课时(2)
教学目标:
1、使学生进一步认识图形的轴对称现象,探索成轴对称的图形的特征和性质。
2、培养学生的空间想象力和思维能力,使学生学会画轴对称图形的另一半,能够在方格纸上画出一个图形的轴对称图形。
3、使学生在活动中,欣赏图形变换所创造出的美,进一步感受对称在生活中的应用,体会数学的价值。
教学重、难点:
重点:探索轴对称的图形的特征和性质。
难点:学会画出轴对称图形。
教学过程:
一、导入
课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
你能根据他们不同的运动变化分分类吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
今天我们就一起来学习“旋转”。板书课题。
二、学习新课
1、生活中的平移。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
2、生活中的旋转:
你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动。
“你见过哪些旋转现象?”先说给同桌听听,然后汇报。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3.学习例题3:
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4.学习例题4:
(1) 引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(2)先让学生说一说画图的步骤,再来画图。
(3)让学生学会先选择几个点,把位置定下来,再来画图。
(4)课件演示画图过程,并帮助学生订正。
五、随堂检测:
1 假如一个图形对折后左右能( ),我们就把它叫做( )图形。轴对称图形对折后都有一条折痕,折痕所在的这条直线,我们就叫做这个轴对称图形的( )。
2 图形转换的基本方式有( )、( )和( )。、
3 明确旋转要说明( )、( )和( )。
板书设计:
旋 转
顺时针
绕中心点O 方向 角度
(固定)逆时针
时针绕点O 顺时针 旋转30度
时针绕点O 顺时针 旋转60度
时针绕点O 顺时针 旋转90度
三角形点O 逆时针 旋转90度
六 教后反思
第三课时(3)
教学目标:
1、进一步认识图形的旋转变换,探索它的特征和性质。
2、能在方格纸上将简单的图形旋转90。。
3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
教学重、难点:
重点:1、理解图形旋转变换的含义。2、探索图形旋转的特征和性质。
难点:掌握把一个图形旋转90。的方法。
教学准备:幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。
三、作业设计
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
随堂检测:
板书设计:
对称、平移和旋转知识有广泛的应用。
教学反思:
第四课时(4)
教学目标:
1、通过收集图案,小组交流,感受图案的美,并为自己以后创作图案提供借鉴。
2、通过欣赏图案,发展学生的审美意识和空间观念。
3、自己经历创作实践的整个过程,感受创作的乐趣,进一步培养学生的审美情趣。
教学重点:进一步利用对称、平移、旋转等方法绘制精美的图案。
难点:加深感受图形的内在美,培养学生的审美情趣。
教学准备:课件、方格纸、正方形白板纸、手工纸三张及剪刀等
一、展览导入
课前让学生收集图案,以小组为单位进行交流。
思考:这些图案是怎样设计的,它有什么特点?
指名介绍本组中最美的图案,并结合思考说一说它的特点。
二、学习新课
(一)尝试创造:
让学生做第8页第1、2题。
1、鼓励学生用学过的图形设计图案,对不同的学生提出不同的要求。
2、交流时,教师对有创意、绘图美观的同学给予表扬和激励。
(二)设计图案:
做第10页“实践活动”7题。
1、 提出三个步骤:
(1)先选择一个喜欢的图形;
(2)再确定你选用的对称、平移和旋转的方法;
(3)动手绘制图案。
2、分别利用对称、平移和旋转创作一个图案后,全班交流。
三、随堂检测:
(一)反馈练习:
1、制作“雪花”:
取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。
2.作品展示。
3、独立观察并尝试做第9页第5题。
全班交流各自的作品,选出好的作品互相评价,全班展览。
板书设计:
板书设计: 旋 转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
教后反思:
第五课时(5)
教学目标:
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重点:会利用轴对称的知识画对称图形。
难点:平面图形的轴对称情况,能正确地找出其对称轴
教学准备:幻灯片、课件。
教学设计
一、 出示课题,教学目标
1.通过欣赏与设计图案,进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
二、出示自学指导
认真看课本
说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。
三、学生看书,自学
四、效果检测
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
五、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
随堂检测:
教材第9页第5题。
板书设计:轴对称
把一个图形沿着一条直线折叠后,两边的图形可以完全重合,那么这个图形就是轴对称图形,这条直线就是对称轴。
画法:先找对称点,再把对称点连接起来。
教学反思:
第六课时(6)
教学目标:
1、进一步认识图形的旋转变换,探索它的特征和性质。
2、能在方格纸上将简单的图形旋转90。。
3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
教学重、难点:
重点:1、理解图形旋转变换的含义。2、探索图形旋转的特征和性质。
难点:掌握把一个图形旋转90。的方法。
教学准备:投影仪,课件,主题图。
教学过程设计:
一、创设游戏情境,引入新课
互动游戏
师:同学们,喜欢玩游戏吗?玩过掌中宝游戏机吗?都玩过什么游戏?
生举例。
师:今天,老师给大家带来一个游戏,想玩吗?
出示:“俄罗斯方块”游戏画面一 (图略)
师:如果现在让你来玩,你准备怎么操作?
生:把黄色的图形顺时针旋转90。,放在右边的角落。
师:用手示范一下怎样就是顺时针旋转呢?
生示范。
师:(用手做出示范)那与之相反的是什么旋转呢?
生:逆时针旋转。
(出示动画:黄色图形顺时针旋转90。后下落)
1、揭示课题
师:刚才,我们在玩游戏的过程中,大家几次提到了一个词“旋转”。这节课,我们就来研究“旋转”。板书课题。
2、联系生活
师:生活中,你还见过哪些旋转现象?
生:风扇、陀螺、旋转木马、钟表、车轮……
(出示动画:几种旋转现象)
师:生活中像这样的旋转现象很多,我们就从与我们关系最密切地钟表开始研究吧!
二、认识图形的旋转,探索图形旋转的特征与性质
(一)认识线段的旋转,理解旋转的含义
1、观察、描述旋转现象
出示:钟表
师:请同学们仔细观察指针的旋转过程。
出示动画:(指针从12指向1)
师:谁能用一句话完整地描述一下刚才的这个旋转过程?
(教师引导学生叙述完整)
生:指针 从“12” 绕点O 顺时针旋转30。到“1”。
板书:指针 从“12” 绕点O 顺时针旋转 30。到“1”
(出示动画:指针从1指向3)
师:这次指针又是如何旋转的?
生:指针 从“1” 绕点O 顺时针旋转60。到“3”。
(出示动画:指针从3指向6)
师:同桌互相说一说。
师:如果指针从“6”继续绕点O顺时针旋转180。会指向几呢?
生:12
(出示动画:指针从6指向12)
2、小结,明确旋转的要素
师:我们描述了这么多旋转现象,想想看,要想把一个旋转现象描述清楚,应该说哪些方面?
生:旋转物体、起止位置、绕哪一点、旋转方向、旋转的度数
三:小结
通过观察,我们发现风车旋转后,不仅是每个三角形都绕点O逆时针旋转了90。(闪烁),而且,每条线段(闪烁),每个顶点(闪烁),都绕点O逆时针旋转了90。
我们在画一个旋转图形时,首先要确定它围绕的点,然后找到这个图形各个点的对应点,最后连线。
板书设计:
对称、平移和旋转的画法
随堂检测:
下面请同学们小组合作,共同来解决报告单上提出的问题。
(1)从图1到图2,风车绕点O逆时针旋转了___度。
(2)你是怎样判断风车旋转的角度的?
(3)图1到图2,风车绕点O逆时针旋转了90。;
(4) 根据三角形变换的位置判断风车旋转的角度;
(5) 根据对应的线段判断风车旋转的角度;
(6) 根据对应的点判断风车旋转的角度。
板书设计:
教学反思:
第一单元小结
《轴对称图形》
对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2 剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。三、想办法做出以各轴对称图形、并分组展示自己的作品。这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。
第二单元 因数和倍数
单元教学计划
教学内容:1.因数和倍数2。2. 2、5、3的倍数的特征。3.质数和合数
教学目标
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
授课时数:约8课时
第一课时(7)
课题:因数和倍数
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为26=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)
齐读p12的注意。
二、新授:
(一)找因数:
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,181=18,182=9,183=6,184=…;用乘法一对一对找,如118=18,29=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报 3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数 3的倍数 5的倍数
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
随堂检测:
完成练习二1~4题
板书设计:
因数和倍数
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数
教后反思:
第二课时(8)
课题:因数和倍数2
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学设计:
一、出示课题,学习目标
1、掌握找一个数的因数,倍数的方法;
2、了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
二、出示自学指导
认真看课本主题图,找出12的其他因数
任何一个数的因数,最小的一定是( ),而最大的一定是( )。
完成做一做1、2小题:找3和5的倍数。
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、学生看书,自学
四、效果检测
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
五、作业设计:
完成练习二1~4题
板书设计:
因数和倍数
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数
教学反思:
第三课时(9)
课题:2、5的倍数的特征
教学目标:
1、掌握 2 、 5 倍数的特征
2、理解并掌握奇数和偶数的概念。
3、能运用这些特征进行判断。
4、培养学生的概括能力。
教学重点: 2 、5 倍数的数的特征。
难点:奇数和偶数的概念。
教学用具:投影片。
教学过程:
一、复习准备
1、提问。
① 说出 20 的全部因数。
② 说出 5 个 8 的倍数。
③ 26 的最小因数是几?最大因数是几?最小的倍数是几?
2、按要求在集合圈里填上数。
二、 学习新课:
(一)2 的倍数的特征。
1、教师:(练习 2) 右边集合圈里的数与左边圈里的数是什么关系?
教师:请观察右边圈里的数,它们的个位数有什么特点?
( 个位上是 0,2,4,6,8。)
教师:请再举出几个2的倍数,看看符不符合这个特点?
学生随口举例。
教师:谁能说一说是2的倍数的数的特征?
学生口答后老师板书:个位上是 0,2,4,6,8的数,都是2的倍数。
2、口答练习:(投影片)请把下面的数按要求填在圈内(是2的倍数,不是2的倍数)
1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。
学生口答完后,老师介绍:奇数和偶数的定义
板书:上面两个集合圈上补写出 “ 偶数 ”,“ 奇数 ”。
教师:上面两个集合圈里该不该打省略号?为什么?
学生讨论后老师说明:
在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。
教师:奇数、偶数在我们日常生活中你遇到过吗?习惯上称它们为什么数? (单数、双数。)
3、练习:( 先分小组小说,再全班统一回答。)
① 说出5个2的倍数。(要求:两位数。)
② 说出3个不是2的倍数的三位数。
③ 说出 15 ~ 35 以内的偶数。
④ 50以内的偶数有多少个?奇数有多少个?
(二)5 的倍数的特征。
1、教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究2的倍数的特征的相同方法,找出 5 的倍数的特征?
学生自己动手填数、观察、讨论。老师巡视过程中选一位同学板书填空。
教师:说一说5的倍数的特征?
教师:请举几个多位数验证。
教师:再说一说什么样的数是5的倍数。
板书:个位上是0或者5的数,都是5的倍数。
2、练习:
① 按从小到大的顺序,说出50以内5的倍数。
② (投影片)下面哪些数是5的倍数?
240,345,431,490,545,543,709,725,815,922,986,990。
③(投影片)从下面的数中挑出既是2的倍数,又是5的倍数的数。这些数有什么特点?
12,25,40,80,275,320,694,720,886,3100,3125,3004。
学生口答后教师板书:个位数字是 0 。
④ 教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。
随堂检测:
1 、在1~50的自然数中,2的倍数有( )个,5的倍数数有( )个。
2 、比75小,比50大的奇数有( )。
3 、个位是( )的数同时是2和5的倍数。
4 、用 0 , 7 , 4 , 5 , 9 五个数字组成 2的倍数;5的倍数;同时是 2 和 5 的倍数的数。
四、全课总结:这节课你学会了什么?有什么收获?
板书设计:
2 、5 倍数的特征
个位上是 0,2,4,6,8的数,都是2的倍数。
个位上是0或者5的数,都是5的倍数。
教学反思:
第四课时(10 )
课题:2、5的倍数的特征2
教学目标:
1、掌握 2 、5 倍数的特征
2、理解并掌握奇数和偶数的概念。
3、能运用这些特征进行判断。
4、培养学生的概括能力。
重点和难点:
1、是2 、5 倍数的数的特征。
2、奇数和偶数的概念。
教学设计:
一、出示课题,学习目标
1、掌握 2 、 5 倍数的特征
2、理解并掌握奇数和偶数的概念。
3、能运用这些特征进行判断。
二、出示自学指导
认真看课本观察
(一)2 的倍数的特征。
(二)5 的倍数的特征。
三、学生看书,自学
四、效果检测
(一)谁能说一说是2的倍数的数的特征?
板书:个位上是 0,2,4,6,8的数,都是2的倍数。
介绍:奇数和偶数的定义
说明:在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。
(二)说一说5的倍数的特征?
板书:个位上是0或者5的数,都是5的倍数。
随堂检测:
1 、在1~100的自然数中,2和3和5的倍数有( )个。
2 、比65小,比40大的奇数有( )。
3 、个位是( )的数同时是2和5的倍数。
4 、用 0 , 6, 4 , 5 , 四个数字中任选三个组成 2的倍数( )
5的倍数( )
同时是 2 和 5 的倍数的数( )
六、全课总结:这节课你学会了什么?有什么收获?
板书设计:
2 、5 倍数的特征
个位上是 0,2,4,6,8的数,都是2的倍数。
个位上是0或者5的数,都是5的倍数。
教后反思:
第五课时(11)
课题:3的倍数的特征
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重点:是3的倍数的数的特征
难点:是3的倍数的数的特征。
教学过程:
一、提出课题,寻找3的特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
随堂检测:
完成p19做一做
四、课堂小结:
这节课你有什么收获
板书设计:
3的倍数特征
3的倍数什么特征
教后反思:
第六课时(12)
课题:3的倍数的特征2
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重点
3的倍数的数有什么特征
难点:如何判断一个数是3的倍数
教学设计:
一、提出课题,寻找3的倍数特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)
二、自主探索,总结3的倍数特征
师:先请在下表中找出3的倍数,并做上记号。
(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
随堂检测:
完成p19做一做
板书设计:
3的倍数特征
3的倍数什么特征
教后反思:
第七课时(13)
课题:质数和合数
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:区分奇数、质数、偶数、合数。
教学过程:
一、探究发现,总结概念:
1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?
学生独立思考,然后全班交流。
2、师:这样的四个小正方形能拼出几个不同的长方形?
学生各自独立思考,想像后举手回答。
3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?
师:我看到许多同学不用画就已经知道了。(指名说一说)
4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?
学生几乎是异口同声地说:会越多。
师:确定吗?(引导学生展开讨论。)
5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种? 什么情况下拼得的长方形不止一种?并举例说明。
先让学生小组讨论,然后全班交流,师根据学生的回答板书。
师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?
学生独立思考后,在小组内进行交流,然后再全班交流。
引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)
6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。
7、师:那你们
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。