高中数学专题练习题集(共225页).docx
《高中数学专题练习题集(共225页).docx》由会员分享,可在线阅读,更多相关《高中数学专题练习题集(共225页).docx(225页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 高考等差、等比数列及其应用 【考纲要求】1考查数列的函数性及与方程、不等式相结合的数列综合题2考查运用数列知识解决数列综合题的能力【课程类型】一对一个性化教学【教学建议】 数列是高中的重要内容,考试说明中,等差、等比数列都是C级要求,因而考试题多为中等及以上难度,试题综合考查了函数与方程,分类讨论等数学思想填空题常常考查等差、等比数列的通项公式、前n项和公式及等差、等比数列的性质,考查运算求解能力;解答题综合性很强,不仅考查数列本身的知识而且还涉及到函数、不等式、解析几何等方面的知识,基本上都是压轴题因此希望同事们多研究全国各省市高考题,精选精练,让学生学有所获,学
2、有所思,学有信心,克服数列难的思想。【复习指导】1熟练等差数列与等比数列的基本运算2.数列中与之间的互化关系也是高考的一个热点.3掌握隐藏在数列概念和解题方法中的数学思想,如“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等基础练习1.已知是等比数列,则=_.解析数列仍是等比数列,其首项是公比为所以, 2.设,则数列的通项公式= 解析数列是等比数列,则3数列an满足a12,a21,并且(n2),则数列an的第100项为 .解析 由已知可得:,n2,是等差数列,a100.一. 若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a3bc10,则a_解析 由c,a,b成等比数列可
3、将公比记为q,三个实数a,b,c,待定为cq,cq2,c.由实数a、b、c成等差数列得2bac,即2cq2cqc,又等比数列中c0,所以2q2q10,解一元二次方程得q1(舍去,否则三个实数相等)或q,又a3bca3aqa10,所以a4.5已知数列an的前n项和为Sn,a11,Sn2an1,则Sn_.解析 本小题主要考查数列前n项和Sn与通项an的关系,解题的突破口是用an表示Sn.由Sn2an12(Sn1Sn)得Sn1Sn,所以Sn是以S1a11为首项,为公比的等比数列,所以Sn.考向一等差数列与等比数列的综合应用【例1】设数列的前项和为 已知(I)设,证明数列是等比数列 (II)求数列的通
4、项公式.解:(I)由及,有由, 则当时,有得又,是首项,公比为的等比数列(II)由(I)可得,数列是首项为,公差为的等比数列, 第(I)问思路明确,只需利用已知条件寻找第(II)问中由(I)易得,这个递推式明显是一个构造新数列的模型:,主要的处理手段是两边除以【巩固练习】 1已知等比数列an的公比q.(1)若a3,求数列an的前n项和;(2)证明:对任意kN,ak,ak2,ak1成等差数列解:(1)由a3a1q2及q,得a11,所以数列an的前n项和Sn(2)证明:对任意kN,2ak2(akak1)2a1qk1(a1qk1a1qk)a1qk1(2q2q1),由q得2q2q10,故2ak2(ak
5、ak1)0.所以,对任意kN,ak,ak2,ak1成等差数列2设是公差不为零的等差数列,为其前项和,满足(1)求数列的通项公式及前项和;(2)试求所有的正整数,使得为数列中的项.解:(1)设公差为,则,由性质得,因为,所以,即,又由得,解得,所以的通项公式为,前项和。(二) ,令,w.w.w.k.s.5.u.c.o.m 因为是奇数,所以可取的值为,当,时,是数列中的项;,时,数列中的最小项是,不符合.所以满足条件的正整数. 考向二数列与函数的综合应用【例2】在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.()求数列的通项公式;()设求数列的前项和.解:(I
6、)设构成等比数列,其中则 并利用(II)由题意和(I)中计算结果,知另一方面,利用得所以 本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力.【巩固练习】 设函数f(x)(x3)3x1,an是公差不为0的等差数列,f(a1)f(a2)f(a7)14,则a1a2a7_解析 记公差为d,则f(a1)f(a2)f(a7)(a13)3(a23)3(a73)3(a1a2a7)7(a43d3)3(a42d3)3(a42d3)3(a43d3)37a477(a43)373(a43)7a47.由已知,7(a43)373(a43)7a4
7、714,即7(a43)373(a43)7(a43)0,(a43)34(a43)0.因为f(x)x34x在R上为增函数,且f(0)0,故a430,即a43,a1a2a77a47321.考向三数列与不等式的综合应用热身:设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是_.【答案】【例3】 已知各项均为正数的两个数列an和bn满足:an1,nN*. (1)设bn11,nN*,求证:数列 是等差数列;一、 设bn1,nN*,且an是等比数列,求a1和b1的值(2)因为an0,bn0,所以ab(anbn)2,从而10知q0.下证q1.若q1,则a1logq时,an1a1qn,与(*)矛
8、盾; 若0qa21,故当nlogq时,an1a1qn1,与(*)矛盾综上,q1,故ana1(nN*),所以11,于是b1b2a1,则a4a2 解析 本题考查等比数列通项、简单不等式性质与均值不等式,选(2) 2.已知等比数列中,则其前3项的和的取值范围是_. 解析:等比数列中 当公比时,; 当公比时, 3.等差数列中,已知,则的取值范围是 .答案:拓展错误!未指定书签。(2012年高考(广东理)设数列的前项和为,满足,且、成等差数列.()求的值;()求数列的通项公式;()证明:对一切正整数,有.错误!未找到引用源。解析:()由,解得. ()由可得(),两式相减,可得,即,即,所以数列()是一个
9、以为首项,3为公比的等比数列.由可得,所以,即(),当时,也满足该式子,所以数列的通项公式是. ()因为,所以,所以,于是. 【考纲要求】1考查数列的函数性及与方程、不等式相结合的数列综合题2考查运用数列知识解决数列综合题的能力【课程类型】一对一个性化教学【教学建议】 数列是高中的重要内容,考试说明中,等差、等比数列都是C级要求,因而考试题多为中等及以上难度,试题综合考查了函数与方程,分类讨论等数学思想填空题常常考查等差、等比数列的通项公式、前n项和公式及等差、等比数列的性质,考查运算求解能力;解答题综合性很强,不仅考查数列本身的知识而且还涉及到函数、不等式、解析几何等方面的知识,基本上都是压
10、轴题因此希望同事们多研究全国各省市高考题,精选精练,让学生学有所获,学有所思,学有信心,克服数列难的思想。【复习指导】1熟练等差数列与等比数列的基本运算2.数列中与之间的互化关系也是高考的一个热点.3掌握隐藏在数列概念和解题方法中的数学思想,如“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等基础练习1.已知是等比数列,则=_.解析数列仍是等比数列,其首项是公比为所以, 2.设,则数列的通项公式= 解析数列是等比数列,则3数列an满足a12,a21,并且(n2),则数列an的第100项为 .解析 由已知可得:,n2,是等差数列,a100.二. 若互不相等的实数a,b,c成等差数列,c,
11、a,b成等比数列,且a3bc10,则a_解析 由c,a,b成等比数列可将公比记为q,三个实数a,b,c,待定为cq,cq2,c.由实数a、b、c成等差数列得2bac,即2cq2cqc,又等比数列中c0,所以2q2q10,解一元二次方程得q1(舍去,否则三个实数相等)或q,又a3bca3aqa10,所以a4.5已知数列an的前n项和为Sn,a11,Sn2an1,则Sn_.解析 本小题主要考查数列前n项和Sn与通项an的关系,解题的突破口是用an表示Sn.由Sn2an12(Sn1Sn)得Sn1Sn,所以Sn是以S1a11为首项,为公比的等比数列,所以Sn.考向一等差数列与等比数列的综合应用【例1】
12、设数列的前项和为 已知(I)设,证明数列是等比数列 (II)求数列的通项公式.解:(I)由及,有由, 则当时,有得又,是首项,公比为的等比数列(II)由(I)可得,数列是首项为,公差为的等比数列, 第(I)问思路明确,只需利用已知条件寻找第(II)问中由(I)易得,这个递推式明显是一个构造新数列的模型:,主要的处理手段是两边除以【巩固练习】 1已知等比数列an的公比q.(1)若a3,求数列an的前n项和;(2)证明:对任意kN,ak,ak2,ak1成等差数列解:(1)由a3a1q2及q,得a11,所以数列an的前n项和Sn(2)证明:对任意kN,2ak2(akak1)2a1qk1(a1qk1a
13、1qk)a1qk1(2q2q1),由q得2q2q10,故2ak2(akak1)0.所以,对任意kN,ak,ak2,ak1成等差数列2设是公差不为零的等差数列,为其前项和,满足(1)求数列的通项公式及前项和;(2)试求所有的正整数,使得为数列中的项.解:(1)设公差为,则,由性质得,因为,所以,即,又由得,解得,所以的通项公式为,前项和。(三) ,令,w.w.w.k.s.5.u.c.o.m 因为是奇数,所以可取的值为,当,时,是数列中的项;,时,数列中的最小项是,不符合.所以满足条件的正整数. 考向二数列与函数的综合应用【例2】在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数
14、的乘积记作,再令.()求数列的通项公式;()设求数列的前项和.解:(I)设构成等比数列,其中则 并利用(II)由题意和(I)中计算结果,知另一方面,利用得所以 本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力.【巩固练习】 设函数f(x)(x3)3x1,an是公差不为0的等差数列,f(a1)f(a2)f(a7)14,则a1a2a7_解析 记公差为d,则f(a1)f(a2)f(a7)(a13)3(a23)3(a73)3(a1a2a7)7(a43d3)3(a42d3)3(a42d3)3(a43d3)37a477(a43
15、)373(a43)7a47.由已知,7(a43)373(a43)7a4714,即7(a43)373(a43)7(a43)0,(a43)34(a43)0.因为f(x)x34x在R上为增函数,且f(0)0,故a430,即a43,a1a2a77a47321.考向三数列与不等式的综合应用热身:设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是_.【答案】【例3】 已知各项均为正数的两个数列an和bn满足:an1,nN*. (1)设bn11,nN*,求证:数列 是等差数列;二、 设bn1,nN*,且an是等比数列,求a1和b1的值(2)因为an0,bn0,所以ab(anbn)2,从而10
16、知q0.下证q1.若q1,则a1logq时,an1a1qn,与(*)矛盾; 若0qa21,故当nlogq时,an1a1qn1,与(*)矛盾综上,q1,故ana1(nN*),所以11,于是b1b2a1,则a4a2 解析 本题考查等比数列通项、简单不等式性质与均值不等式,选(2) 2.已知等比数列中,则其前3项的和的取值范围是_. 解析:等比数列中 当公比时,; 当公比时, 3.等差数列中,已知,则的取值范围是 .答案:拓展错误!未指定书签。(2012年高考(广东理)设数列的前项和为,满足,且、成等差数列.()求的值;()求数列的通项公式;()证明:对一切正整数,有.错误!未找到引用源。解析:()
17、由,解得. ()由可得(),两式相减,可得,即,即,所以数列()是一个以为首项,3为公比的等比数列.由可得,所以,即(),当时,也满足该式子,所以数列的通项公式是. ()因为,所以,所以,于是. 高考基本不等式的应用 【课程类型】一对一【课时设置】6小时【教学建议】本专题题目选自高考真题,高考模拟题,都是中等题和难题,适合提优。【知识梳理】1基本不等式如果a0,b0,那么(当且仅当ab时取“”)2基本不等式的推广与变形a,bR,;a,bR,ab.3极值定理已知x、yR,xyP,xyS.有下列命题:(1)如果S是定值,那么当且仅当xy时,xy有最小值2;(2)如果P是定值,那么当且仅当xy时,x
18、y有最大值;(3)应用此结论求最值时要注意三个条件:各项均为正;积或和为定值;各项都能取得相等的值,简单地说“一正,二定,三相等”【题型归纳】 题型1.用极值定理求最值例1 已知f(x)log2(x2),若实数m,n满足f(m)f(2n)3,则mn的最小值是_【解析】 方法一:由log2(m2)log2(2n2)3,得(m2)(n1)4,则m2,所以mn2n(n1)3237(当且仅当“n3”时,取等号),故mn的最小值为7.方法二:由log2(m2)log2(2n2)3,得(m2)(n1)4,又(当且仅当“m4,n3”时,取等号),即mn7.【点评】 二元最值问题可根据条件反映的二者之间的关系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 专题 习题集 225
限制150内