高二数学《基本不等式》教案分析(共11页).doc
《高二数学《基本不等式》教案分析(共11页).doc》由会员分享,可在线阅读,更多相关《高二数学《基本不等式》教案分析(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 高二数学基本不等式教案分析 高二数学基本不等式教案分析 一、教材分析 【教材地位及作用】 基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5第3章第3节内容。教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。 【教
2、学目标】 依据新课程标准对不等式学段的目标要求和学生的实际情况,特确定如下目标: 知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式; 过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力; 情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。 【教学重难点】 重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。 难点:利用基本不等式推导不等式. 关键是对基本不等式的理解掌握. 二、教法分析 本节课采
3、用观察感知抽象归纳探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率 三、学法指导 新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。 四、教学过程 教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学
4、生对知识的再创造、再发现的过程,从而培养学生的创新意识。 具体过程安排如下: (一)基本不等式的教学设计创设情景,提出问题 设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。 问题1请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论) (二)探究问题,抽象归纳 基本不等式的教学设计1探
5、究图形中的不等关系 形的角度-(利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积.) 数的角度 问题2若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系? 学生讨论结果:。 问题3大家看,这个图形里还真有点奥妙。我们从图中找到了一个不等式。这里a、b的取值有没有什么限制条件?不等式中的等号什么时候成立呢?(师生共同探索) 咱们再看一看图形的变化,(教师演示) (学生发现)当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即.探索结论:我们得到不等式,当且仅当时等号成立。 设计意图:本背景意图在于利用图中相关面积间存
6、在的数量关系,抽象出不等式基本不等式的教学设计。在此基础上,引导学生认识基本不等式。 2抽象归纳: 一般地,对于任意实数a,b,有,当且仅当ab时,等号成立。 问题4你能给出它的证明吗? 学生在黑板上板书。 问题5特别地,当时,在不等式中,以、分别代替a、b,得到什么? 学生归纳得出。 设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础. 【归纳总结】 如果a,b都是非负数,那么,当且仅当a=b时,等号成立。 我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。 3探究基本不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本不等式 数学 基本 不等式 教案 分析 11
限制150内