2022年高中数学函数解题技巧方法总结 .pdf
《2022年高中数学函数解题技巧方法总结 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学函数解题技巧方法总结 .pdf(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载高中数学函数知识点总结1. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)相同函数的判断方法:表达式相同;定义域一致 ( 两点必须同时具备 ) 2. 求函数的定义域有哪些常见类型?例:函数的定义域是yxxx432lg(答:,)022334函数定义域求法:分式中的分母不为零;偶次方根下的数(或式)大于或等于零;指数式的底数大于零且不等于一;对数式的底数大于零且不等于一,真数大于零。正切函数xytankkxRx,2,且余切函数xycotkkxRx,且反三角函数的定义域函数 yarcsinx的定义域是 1, 1 ,值域是,函数 yarccosx 的定义域是
2、1, 1 ,值域是 0, , 函数 yarctgx的定义域是 R , 值域是. , 函数 yarcctgx的定义域是 R ,值域是 (0, ) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。3. 如何求复合函数的定义域?的定,则函数,的定义域是如:函数)()()(0)(xfxfxFabbaxf义域是 _ 。(答:,)aa复合函数定义域的求法: 已知)(xfy的定义域为nm,,求)(xgfy的定义域,可由nxgm)(解出 x 的范围,即为)(xgfy的定义域。例若函数)(xfy的定义域为2,21,则)(log2xf的定义
3、域为。分析: 由函数)(xfy的定义域为2,21可知:221x;所以)(log2xfy中有2log212x。解:依题意知:2log212x解之,得42x)(log2xf的定义域为42|xx4、函数值域的求法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 19 页学习必备欢迎下载1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数 y=x1的值域2、配方法配方法是求二次函数值域最基本的方法之一。例、求函数 y=2x-2x+5,x-1 ,2 的值域。3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但
4、这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂.112.22222222ba y型:直接用不等式性质k+xbxb. y型, 先化简,再用均值不等式xmxnx1例: y1+xx+xxmxnc y型 通常用判别式xmxnxmxnd. y型xn法一:用判别式法二:用换元法,把分母替换掉xx1 (x+1) (x+1) +1 1例: y(x+1)1211x1x1x14、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数 y=6543xx值域。5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性
5、,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数 y=11xxee,2sin11siny,2sin11cosy的值域。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 19 页学习必备欢迎下载222110112sin11| sin| | 1,1sin22sin12sin1(1cos )1cos2sincos114sin()1,sin()41sin()114即又由知解不等式,求出,就是要求的答案xxxeyyeyeyyyyyyyyyxyxyyxyy6、函数单调性法通常和导数结合,是最近高考考的较多的一个内容例求函
6、数 y=25xlog31x(2x10)的值域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数 y=x+1x的值域。8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点 P(x.y )在圆 x2+y2=1上,2,(2),2(,20, (1)的取值范围 (2)y-2的取值范围解:(1) 令则是一条过 (-2,0)的直线 . d为圆心到直线的距离 ,R为半径 ) (2)
7、令y-2即也是直线 d dyxxykyk xxR dxbyxbR例求函数 y=)2(2x+)8(2x的值域。解:原函数可化简得: y=x-2 +x+8上式可以看成数轴上点P(x)到定点 A(2) ,B(-8)间的距离之和。由上图可知:当点 P 在线段 AB上时,y=x-2 +x+8=AB =10 当点 P在线段 AB的延长线或反向延长线上时,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 19 页学习必备欢迎下载y=x-2 +x+8 AB =10 故所求函数的值域为: 10 ,+)例求函数 y=1362xx+ 542xx的值域解:原函数
8、可变形为: y=)20()3(22x+) 10()2(22x上式可看成 x 轴上的点 P(x,0)到两定点 A (3,2) ,B(-2 ,-1)的距离之和,由图可知当点 P为线段与 x 轴的交点时, ymin=AB =) 12()23(22=43,故所求函数的值域为 43,+) 。注:求两距离之和时,要将函数9 、不等式法利用基本不等式 a+b2ab,a+b+c3abc3(a,b,cR) ,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例:33()13()32x (3-2x)(0 x1.5)xx+3-2x =xx (3
9、-2x) (应用公式abc时,应注意使3者之和变成常数)abc10. 倒数法有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例求函数 y=32xx的值域332(0)11113333222x =xx (应用公式a+b+c时,注意使者的乘积变成常数)xxxxxxabc精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 19 页学习必备欢迎下载2320121112202222012时,时, =00 xyxxxxyyxxxyy多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优
10、先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。5. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?切记:做题,特别是做大题时,一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂如:,求fxexf xx1( ).令,则txt10 xt21f tett( )2121f xexxx( )212106. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(反解 x;互换 x、y;注明定义域)如:求函数的反函数f xxxxx( )1002(答:)fxxxxx1110( )在更多时候,反函数的求法只是在选择题
11、中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:(2004. 全国理 )函数) 1( 11xxy的反函数是( B )Ay=x22x+2(x1) By=x22x+2(x1) Cy=x22x ( x=1. 排除选项 C,D.现在看值域。原函数至于为y=1, 则反函数定义域为 x=1, 答案为 B. 我题目已经做完了,好像没有动笔(除非你拿来写*书) 。思路能不能明白呢?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 19 页学习必备欢迎下载7. 反函数的性质有哪些?反函数性质:1、反函数的定义域是原函数的值域(可扩展为反函数中
12、的x 对应原函数中的y)2、反函数的值域是原函数的定义域(可扩展为反函数中的y 对应原函数中的 x)3、反函数的图像和原函数关于直线=x 对称(难怪点( x,y )和点( y,x)关于直线 y=x 对称互为反函数的图象关于直线yx 对称;保存了原来函数的单调性、奇函数性;设的定义域为,值域为,则yf(x)ACaAbCf(a) = bf1( )baff afbaf fbf ab111( )( )( )( ),由反函数的性质,可以快速的解出很多比较麻烦的题目,如(04. 上海春季高考)已知函数)24(log)(3xxf,则方程4)(1xf的解x_. 8 . 如何用定义证明函数的单调性?(取值、作差
13、、判正负)判断函数单调性的方法有三种:(1) 定义法:根据定义,设任意得x1,x2,找出 f(x1),f(x2)之间的大小关系可以变形为求1212()()f xf xxx的正负号或者12()()f xf x与 1 的关系(2) 参照图象:若函数 f(x) 的图象关于点 (a, b)对称,函数 f(x) 在关于点 (a, 0)的对称区间具有相同的单调性;(特例:奇函数)若函数 f(x) 的图象关于直线xa 对称,则函数 f(x) 在关于点 (a,0)的对称区间里具有相反的单调性。 (特例:偶函数)(3) 利用单调函数的性质:函数 f(x) 与 f(x) c(c 是常数 )是同向变化的函数 f(x
14、) 与 cf(x)(c是常数 ) ,当 c0 时,它们是同向变化的;当c0 时,它们是反向变化的。如果函数 f1(x) ,f2(x) 同向变化,则函数f1(x) f2(x) 和它们同向变化;(函数相加)如果正值函数 f1(x) ,f2(x) 同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2) 与f2(x) 同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘)函数 f(x) 与1( )fx在 f(x) 的同号区间里反向变化。若函数 u(x) ,x , 与函数 yF(u) ,u ( ) ,( ) 或 u ( ), () 同向变化,则在 , 上复合函数 yF (x
15、) 是递增的;若函数u(x),x, 与函数 yF(u) ,u ( ) ,( ) 或 u ( ) ,( ) 反向变化,则在 , 上复合函数 yF(x) 是递减的。 (同增异减)若函数 yf(x) 是严格单调的,则其反函数xf1(y) 也是严格单调的,而且,它们的增减性相同。如:求的单调区间yxxlog1222f(g) g(x) fg(x) f(x)+g(x) f(x)*g(x) 都是正数增增增增增增减减/ / 减增减/ / 减减增减减精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 19 页学习必备欢迎下载(设,由则uxxux22002且,
16、如图:log12211uuxu O 1 2 x 当,时,又,xuuy(log0112当,时,又,xuuy)log1212)9. 如何利用导数判断函数的单调性?在区间,内,若总有则为增函数。(在个别点上导数等于abfxf x( )( )0零,不影响函数的单调性),反之也对,若呢?fx( )0如:已知,函数在,上是单调增函数,则的最大af xxaxa013( )值是() A. 0 (令 fxxaxaxa()333302则或xaxa33由已知在,上为增函数,则,即f xaa( )1313a 的最大值为 3)10. 函数 f(x) 具有奇偶性的必要(非充分)条件是什么?(f(x) 定义域关于原点对称)
17、若总成立为奇函数函数图象关于原点对称fxf xf x()( )( )若总成立为偶函数函数图象关于轴对称fxf xf xy()( )( )注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。( )若是奇函数且定义域中有原点,则。2f(x)f(0)0如:若为奇函数,则实数f xaaaxx( )2221(为奇函数,又,f xxRRf( )( )000精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 19 页学习必备欢迎下载即,)aaa22210100又如:为定义在,上的奇函数
18、,当,时,f xxf xxx( )()()( )1101241求在,上的解析式。f x( )11(令,则,xxfxxx1001241()又为奇函数,f xf xxxxx( )( )241214又,)ff xxxxxxxx( )( )()002411002410111. 判断函数奇偶性的方法一、定义域法一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件. 若函数的定义域不关于原点对称,则函数为非奇非偶函数. 二、奇偶函数定义法在给定函数的定义域关于原点对称的前提下,计算)( xf,然后根据函数的奇偶性的定义判断其奇偶性. 这种方法可以做如下变形f(x)+f(-x)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学函数解题技巧方法总结 2022 年高 数学 函数 解题 技巧 方法 总结
限制150内