立体几何典型题型(理科).doc
《立体几何典型题型(理科).doc》由会员分享,可在线阅读,更多相关《立体几何典型题型(理科).doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date立体几何典型题型(理科)立体几何典型题型(理科)立体几何经典例题剖析考点一 空间向量及其运算1. 已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?解析:要判断点与是否一定共面,即是要判断是否存在有序实数对使或对空间任一点,有。答案:由题意:,即,所以,点与共面点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形
2、式,然后对照形式将已知条件进行转化运算2. 如图,已知矩形和矩形所在平面互相垂直,点,分别在对角线,上,且,求证:平面解析:要证明平面,只要证明向量可以用平面内的两个不共线的向量和线性表示答案:证明:如图,因为在上,且,所以同理,又,所以又与不共线,根据共面向量定理,可知,共面由于不在平面内,所以平面点评:空间任意的两向量都是共面的与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABCA1B1C1中,AC3,BC4,AA14,点D是AB的中点, (I)求证:ACBC1; (II)求证:AC 1/平面CDB1;解析:(1)证明线线垂直方法有两类:一是通
3、过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.答案:解法一:(I)直三棱柱ABCA1B1C1,底面三边长AC=3,BC=4AB=5, ACBC,且BC1在平面ABC内的射影为BC, ACBC1;(II)设CB1与C1B的交点为E,连结DE, D是AB的中点,E是BC1的中点,ABCA1B1C1Exyz DE/AC1, DE平面CDB1,AC1平面CDB1, AC1/平面CDB1;解法二:直三棱柱ABCA1B1C1底面三边长AC3,BC4,AB5,AC、BC、C1C两两垂直,如图,以C为坐标原点,
4、直线CA、CB、C1C分别为x轴、y轴、z轴,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(1)(3,0,0),(0,4,0),0,ACBC1.(2)设CB1与C1B的交战为E,则E(0,2,2).(,0,2),(3,0,4),DEAC1.点评:转化转化2平行问题的转化:面面平行线面平行线线平行;主要依据是有关的定义及判定定理和性质定理4. (2007武汉3月)如图所示,四棱锥PABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。(1)求证:BM平面PAD;(2)在
5、侧面PAD内找一点N,使MN平面PBD;(3)求直线PC与平面PBD所成角的正弦。解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)是的中点,取PD的中点,则,又四边形为平行四边形,(4分) (2)以为原点,以、 所在直线为轴、轴、轴建立空间直角坐标系,如图,则,在平面内设, 由 由 是的中点,此时(8分) (3)设直线与平面所成的角为,设为 故直线与平面所成角的正弦为(12分)解法二: (1)是的中点,取PD的中点,则,又四边形为平行四边形,(4分) (2)由(1)知为平行四边形,又 同理, 为矩形 ,又 作故交于,在矩形内, 为的
6、中点当点为的中点时,(8分) (3)由(2)知为点到平面的距离,为直线与平面所成的角,设为,直线与平面所成的角的正弦值为点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是090,其方法是平移法和补形法;直线与平面所成角的范围是090
7、,其解法是作垂线、找射影;二面角0180,其方法是:定义法;三垂线定理及其逆定理;垂面法 另外也可借助空间向量求这三种角的大小.5. (四川省成都市2007届高中毕业班第三次诊断性检测)如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.()求与底面所成角的大小;()求证:平面;()求二面角的余弦值. 解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法 答案:(I)取DC的中点O,由PDC是正三角形,有PODC又平面PDC底面ABCD,PO平面ABCD于O连结OA,则OA是PA在底面上的射影PAO
8、就是PA与底面所成角ADC=60,由已知PCD和ACD是全等的正三角形,从而求得OA=OP=PAO=45PA与底面ABCD可成角的大小为45 6分(II)由底面ABCD为菱形且ADC=60,DC=2,DO=1,有OADC 建立空间直角坐标系如图,则, 由M为PB中点,PADM,PADC PA平面DMC4分(III)令平面BMC的法向量,则,从而x+z=0; , ,从而 由、,取x=1,则 可取由(II)知平面CDM的法向量可取, 所求二面角的余弦值为6分法二:()方法同上 ()取的中点,连接,由()知,在菱形中,由于,则,又,则,即,又在中,中位线,则,则四边形为,所以,在中,则,故而,则()
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 典型 题型 理科
限制150内