数学中的中国传统文化问答题汇编.doc
#+数学中的中国传统文化一、算法问题1用更相减损术求294和84的最大公约数时,需要做减法的次数为()A2 B3 C4 D5答案C解析(84,294)(84,210)(84,126)(84,42)(42,42),一共做了4次减法2如图所示的程序框图的算法思路来源于我国古代数学名著九章算术中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a为()A4 B2 C0 D14答案B解析由题意输出的a是18,14的最大公约数2,故选B.3用辗转相除法求459和357的最大公约数,需要做除法的次数是()A1 B2 C3 D4答案C解析4593571102,357102351,102512,459和357的最大公约数是51,需要做除法的次数是3.4秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,对于求一个n次多项式函数fn(x)anxnan1xn1a1xa0的具体函数值,运用常规方法计算出结果最多需要n次加法和次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间,因此即使在今天该算法仍具有重要意义运用秦九韶算法计算f(x)0.5x64x5x43x35x当x3时的值时,最先计算的是()A5315B0.5345.5C3335366D0.5364351 336.6答案B解析f(x)0.5x64x5x43x35x(0.5x4)x1)x3)x0)x5)x,然后由内向外计算,最先计算的是0.5345.5.5若用秦九韶算法求多项式f(x)4x5x22当x3时的值,则需要做乘法运算和加减法运算的次数分别为()A4,2 B5,3C5,2 D6,2答案C解析f(x)(4x)x)x1)x)x2,乘法要运算5次,加减法要运算2次6已知函数f(x)6x65,当xx0时,用秦九韶算法求f(x0)的值,需要进行乘方、乘法、加法的次数分别为()A21,6,2 B7,1,2C0,1,2 D0,6,1答案D解析f(x)6x65,多项式的最高次项的次数是6,要进行乘法运算的次数是6.要进行加法运算的次数是1,运算过程中不需要乘方运算7中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图执行该程序框图,若输入的a依次为2,2,5,x,n均为2,则输出的s等于()A7 B12 C17 D34答案C解析第一次运算,a2,s2,n2,k1,不满足kn;第二次运算,a2,s2226,k2,不满足kn;第三次运算,a5,s62517,k3,满足kn,输出s17,故选C.8用秦九韶算法求多项式f(x)x33x22x11的值时,应把f(x)变形为()Ax3(3x2)x11B(x3)x2(2x11)C(x1)(x2)x11D(x3)x2)x11答案D解析 f(x)x33x22x11(x3)x2)x119用秦九韶算法求函数f(x)3x52x42x34x27当x2的值时,v3的结果是()A4 B10C16 D33答案C解析函数f(x)3x52x42x34x27(3x2)x2)x4)x)x7,当x2时,v03,v13224,v242210,v3102416.10用秦九韶算法求多项式f(x)x65x56x4x20.3x2的值,当x2时,v1的值为()A1 B7C7 D5答案C 解析f(x)x65x56x4x20.3x2(x5)x6)x0)x1)x0.3)x2,v0a61, v1v0xa51(2)57.11利用秦九韶算法求多项式f(x)6x45x32x6的值,当x3时,v3的值为()A486 B351C115 D339答案C解析f(x)6x45x32x6(6x5)x0)x2)x6,v0a46,v1v0xa363513,v2v1xa2133039,v3v2xa13932115.12秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的数书九章中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例若输入n,x的值分别为4,3,则输出v的值为()A20 B61C183 D548答案C解析由程序框图知,初始值:n4,x3,v1,i3,第一次循环:v6,i2;第二次循环:v20,i1;第三次循环:v61,i0;第四次循环:v183,i1.结束循环,输出当前v的值183.13原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天?()A1 326 B510 C429 D336答案B解析由题意满七进一,可得该图示为七进制数,化为十进制数为173372276510.14用秦九韶算法计算多项式f(x)5x54x43x32x2x1,乘法运算次数为_加法运算次数为_答案55解析f(x)(5x4)x3)x2)x1)x1,乘法要运算5次,加法要运算5次15若f(x)x43x3x1,用秦九韶算法计算f()时,需要乘法m次,加法n次,则mn_.答案6解析f(x)x43x3x1(x3)x)x1)x1,用秦九韶算法计算f()时,乘法运算与加法运算的次数和等于6.16我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为和 (a,b,c,dN*),则是x的更为精确的不足近似值或过剩近似值我们知道3.141 59,若令,则第一次用“调日法”后得是的更为精确的过剩近似值,即,若每次都取最简分数,那么第四次用“调日法”后可得的近似分数为_答案17我国古代数学名著九章算术中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”其体现的是一种无限与有限的转化过程,比如在 中“”即代表无限次重复,但原式却是个定值x.这可以通过方程x确定x2,则1_.答案解析由题意,可令1x,即1x,即x2x10,解得x(x舍),故1.18用辗转相除法求840与1 764的最大公约数答案1 764840284,84084100,840与1 764的最大公约数是84.19用更相减损术求440 与556的最大公约数答案556440116,440116324,324116208,20811692,1169224,922468,682444,442420,24204,20416,16412,1248,844,440与556的最大公约数4.20用秦九韶算法求多项式f(x)7x76x65x54x43x32x2x当x3时的值答案f(x)(7x6)x5)x4)x3)x2)x1)xv07,v173627,v2273586,v38634262,v426233789,v5789322 369,v62 369317 108,v77 1083021 324,f(3)21 324,即当x3时,函数值是21 324.21(1)用辗转相除法求840与1 785的最大公约数;(2)用秦九韶算法计算函数f(x)2x43x35x4在x2时的函数值答案(1)1 7858402105,84010580,840与1 785的最大公约数是105.(2)秦九韶算法如下:f(x)2x43x35x4x(2x33x25)4xx(2x23x)54xxx(2x3)54,故当x2时,f(x)222(223)5462.22(1)用辗转相除法求779与247的最大公约数;(2)利用秦九韶算法求多项式f(x)2x54x42x38x27x4当x3时的值答案(1)779247338,24738619,38192.故779与247的最大公约数是19;(2)把多项式改成如下形式:f(x)2x54x42x38x27x4(2x4)x2)x8)x7)x4.按照从内到外的顺序,依次计算一次多项式当x3时的值:v02,v1v0x423410,v2v1x2103228,v3v2x8283892,v4v3x79237283,v5v4x428334853.所以当x3时,多项式f(x)的值是853.23(1)用辗转相除法求228与1 995的最大公约数;(2)用秦九韶算法求多项式f(x)3x52x38x5在x2时的值答案(1)1 9952288171,228171157,171573,因此57是1 995与228的最大公约数(2)f(x)3x52x38x5(3x0)x2)x0)x8)x5当x2时,v03,v1326,v262214,v314228,v4282848,v54825101,所以当x2时,多项式的值是101.24(1)用“更相减损术”求72和168的最大公约数;(2)用“辗转相除法”求98和280的最大公约数答案(1)1687296,967224,722448,482424,故72和168的最大公约数是24.(2)28029884,9818414,84614,故98和280的最大公约数是14.25用秦九韶算法求函数f(x)x5x3x2x1当x3时的函数值答案f(x)x5x3x2x1(x0)x1)x1)x1)x1,当x3时,v01,v1v0303;v2v13110; v3v23131; v4v33194; v5v431283,即x3时的函数值为283.二、数列问题1九章算术是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等问各得几何”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱答案B解析依题意设甲、乙、丙、丁、戊所得钱分别为a2d,ad,a,ad,a2d,则由题意可知,a2dadaada2d,即a6d,又a2dadaada2d5a5,a1,则a2da2()a.2南北朝时期的数学古籍张邱建算经有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中间三人未到者,亦依等次更给问:每等人比下等人多得几斤?”()A. B.C. D.答案B解析设第十等人得金a1斤,第九等人得金a2斤,以此类推,第一等人得金a10斤,则数列an构成等差数列,设公差为d,则每一等人比下一等人多得d斤金,由题意得,即解得d,每一等人比下一等人多得斤金3张丘建算经是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺问:每天多织多少布?”已知1匹4丈,1丈10尺,估算出每天多织的布约有()A0.55尺 B0.53尺C0.52尺 D0.5尺答案A解析设每天多织d尺,由题意a15,an是等差数列,公差为d,S30305d390,解得d0.55.4张丘建算经有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日,第五日,第八日所织之和为十五尺,问第九日所织尺数为()A7 B9 C11 D13答案D解析设第一天织a1尺,从第二天起每天比第一天多织d尺,由已知得解得a13,d2,第九日所织尺数为a9a18d38213.5古代数学著作九章算术有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?” 意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据已知条件,可求得该女子第3天所织布的尺数为()A. B.C. D.答案C解析由题意可得:每天织布的量组成了等比数列an,S55,公比q2 ,5,计算可得a1,所以a322.6在张邱建算经中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的()A33% B49%C62% D88%答案B解析由题意可得:每日的织布量形成等差数列an,且a15,a301,设公差为d,则1529d,解得d.S10510().S3090.该女子到第10日时,大约已经完成三十日织布总量的0.4949%.7张丘建算经是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布()A30尺 B90尺C150尺 D180尺答案B解析由题意可得,每日的织布量形成等差数列an,且a15,a301,所以S3090.8在我国古代著名的数学专著九章算术里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢问:几日相逢?()A9日 B8日C16日 D12日答案A解析由题意知,良马每日行的距离成等差数列,记为an,其中a1103,d13;驽马每日行的距离成等差数列,记为bn,其中b197,d0.5;设第m天相逢,则a1a2amb1b2bm103m97m21 125,解得m9(负值舍去)9九章算术是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为()A.升 B.升 C.升 D.升答案A解析自上而下依次设各节容积为a1,a2,a9,由题意得,即,得,所以a2a3a8(升)10中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A24里 B48里 C96里 D192里答案C解析由题意可知此人每天走的步数构成以为公比的等比数列,由题意和等比数列的求和公式可得378,解得a1192,第二天此人走了19296里11中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”则该人最后一天走的路程为()A24里 B12里C6里 D3里答案C解析记每天走的路程里数为an,可知an是公比q的等比数列,由S6378,得S6378,解得a1192,a61926.12我国古代数学著作九章算术有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一段截下一尺,重四斤;在细的一端截下一尺,重二斤问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为()A6斤 B9斤C10斤 D12斤答案B解析此问题构成一个等差数列an,设首项为2,则a54,中间3尺的重量为3a3339(斤),故选B.13我国古代数学著作九章算术有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A6斤 B9斤C9.5斤 D12 斤答案A解析依题意,金箠由粗到细各尺构成一个等差数列,设首项a14,则a52,由等差数列性质得a2a4a1a56,所以第二尺与第四尺的重量之和为6斤14算法通宗是我国古代内容丰富的数学名书,书中有如下问题:“远望巍巍塔七层,红灯向下倍加增,共灯三百八十一,请问塔顶几盏灯?”其意思为“一座塔共七层,从塔顶至塔底,每层灯的数目都是上一层的2倍,已知这座塔共有381盏灯,请问塔顶有几盏灯?”()A3 B4C5 D6答案A解析由题意设塔顶有a盏灯,由题意由上往下数第n层就有2n1a盏灯,共有(1248163264)a381盏灯,即a381.解得a3.15我国古代数典籍九章算术“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢()A3 B4C5 D6答案B解析由题意可知,大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前n天打洞之和为2n1,同理,小老鼠前n天打洞之和为2,2n1210,解得n(3,4),取n4.即两鼠在第4天相逢16如图是谢宾斯基(Sierpinsiki)三角形,在所给的四个三角形图案中,着色的小三角形个数构成数列an的前4项,则an的通项公式可以是()Aan3n1 Ban2n1Can3n Dan2n1答案A解析着色的小三角形个数构成数列an的前4项,分别为a11,a23,a33332,a4323,因此an的通项公式可以是an3n1.17九章算术“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为_升答案解析设该数列an的首项为a1,公差为d,依题意即解得则a5a14da17d3d.18华罗庚数学小组的同学们在图书馆发现一块古代楔形文字泥板的图片,同学们猜测它是一种乘法表的记录,请你根据这个猜测,判定表示_?(如图)答案395解析图片中记录的是自然数乘以9的运算结果,左列是被乘数,右列是该数乘以9的积数,经过分析可知:其中代表1,代表10,代表60.所以表示60610351395.19在我国南宋数学家杨辉所著的详解九章算法(1261年)一书中,用如图A所示的三角形,解释二项和的乘方规律在欧洲直到1623年以后,法国数学家布莱士帕斯卡的著作(1655年)介绍了这个三角形近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle),如图A.17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图B.在杨辉三角中相邻两行满足关系式:CCC,其中n是行数,rN.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是_1112113311464115101051CCCCC图A图B答案解析类比观察得,莱布尼茨三角形的每一行都能提出倍数,而相邻两项之和是上一行的两者相拱之数,所以类比式子CCC,有.20传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面用点或用小石子表示数他们研究过如图所示的三角形数,将三角形数1,3,6,10,记为数列an,将可被5整除的三角形数按从小到大的顺序组成一个新数列bn可以推测:(1)b2 012是数列an中的第_项;(2)b2k-1_.(用k表示)答案(1)5 030(2)解析由题意可得an123n,nN*,故b1a4,b2a5,b3a9,b4a10,b5a14,b6a15,由上述规律可知:b2ka5k(kN*),b2k-1a5k-1,故b2 012b21 006a51 006a5 030,即b2 012是数列an中的第5 030项21请认真阅读下列材料:“杨辉三角” (1261年)是中国古代重要的数学成就,它比西方的“帕斯卡三角”(1653年)早了300多年(如图1)在“杨辉三角”的基础上德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),称为莱布尼兹三角形(如图2)11112113311464115101051图1图2请回答下列问题:(1)记Sn为图1中第n行各个数字之和,求S4,S7,并归纳出Sn;(2)根据图2前5行的规律依次写出第6行的数答案(1)S4823;S76426;Sn2n1.(2)图中每个数字都是其两脚的数字和,故第6行为.三、空间几何体1我国古代数学名著数书九章中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸若盆中积水深九寸,则平地降雨量是()寸(注:平地降雨量等于盆中积水体积除以盆口面积;一尺等于十寸)A1 B2 C3 D4答案C解析如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸积水深9寸,水面半径为(146)10寸,则盆中水的体积为9(62102610)588(立方寸)平地降雨量等于3(寸)故选C.2九章算术卷5商功记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺问积几何?答曰:二千一百一十二尺术曰:周自相乘,以高乘之,十二而一”这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”就是说:圆堡瑽(圆柱体)的体积为:V(底面的圆周长的平方高)则由此可推得圆周率的取值为(注:1丈10尺)()A3 B3.14 C3.2 D3.3答案A解析由题意,圆柱体底面的圆周长48尺,高11尺,圆堡瑽(圆柱体)的体积V(底面的圆周长的平方高),V(48211)2 112,设底面圆的半径为R,3.3九章算术商功章有题:一圆柱形谷仓,高1丈3尺3寸,容纳米2000斛(1丈10尺,1尺10寸,斛为容积单位,1斛1.62立方尺,3),则圆柱底圆周长约为()A1丈3尺 B5丈4尺C9丈2尺 D48丈6尺答案B解析设圆柱形谷仓底面半径为r尺,由题意得,谷仓高h尺于是谷仓的体积Vr2h2 0001.62,解得r9.圆柱底圆周长约为2r54尺5丈4尺4算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也又以高乘之,三十六成一”该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式VL2h.它实际上是将圆锥体积公式中的圆周率近似取为3.那么,近似公式VL2h相当于将圆锥体积公式中的近似取为()A. B. C. D.答案B解析由题意知L2hr2hL2r2,而L2r,代入得.5在九章算术中,将有三条棱互相平行且有一个面为梯形的五面体称之为羡除,现有一个羡除如图所示,面ABCD、面ABFE、面CDEF均为等腰梯形,ABCDEF,AB6,CD8,EF10,EF到面ABCD的距离为3,CD与AB间的距离为10,则这个羡除的体积是()A110 B116 C118 D120答案D解析过A作APCD,AMEF,过B作BQCD,BNEF,垂足分别为P,M,Q,N,将一侧的几何体放到另一侧,组成一个直三棱柱,底面积为10315.棱柱的高为8,V158120.故选D.6刘徽在他的九章算术注中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积刘徽通过计算,“牟合方盖”的体积与球的体积之比应为.后人导出了“牟合方盖”的体积计算公式,即V牟r3V方盖差,r为球的半径,也即正方形的棱长均为2r,从而计算出V球r3.记所有棱长都为r的正四棱锥的体积为V正,棱长为2r的正方形的方盖差为V方盖差,则等于()A. B.C. D.答案C解析由题意,V方盖差r3V牟r3r3r3,所有棱长都为r的正四棱锥的体积为V正rr r3,.7“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖)其直观图如图所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是()Aa,b Ba,cCc,b Db,d答案A解析由直观图可知,其正视图与侧视图完全相同,则其只能是圆,这时其俯视图就是正方形加对角线(实线)故选A.8刘徽在他的九章算术注中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4,即V牟:V球4.也导出了“牟合方盖”的体积计算公式,即V牟r3V方盖差,从而计算出V球r3.记所有棱长都为r的正四棱锥的体积为V正,则()AV方盖差V正BV方盖差V正CV方盖差V正D以上三种情况都有可能答案A解析由题意,V方盖差r3V牟r3r3r3,所有棱长都为r的正四棱锥的体积为V正rr r3,V方盖差V正9我国古代数学名著数学九章 中有云:“今有木长二丈四尺,围之五尺葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈等于10尺)()A29尺 B24尺C26尺 D30尺答案C解析由题意,圆柱的侧面展开图是矩形,一条直角边(即木棍的高)长24尺,另一条直角边长5210(尺),因此葛藤长26(尺)10九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为9尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()A14斛 B28斛C36斛 D66斛答案B解析设圆锥的底面半径为r,则r9,解得r,故米堆的体积为()2545,1斛米的体积约为1.62立方,堆放的米有451.6228斛11九章算术是我国古代著名数学经典其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分)已知弦AB1尺,弓形高CD1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈10尺100寸,3.14,sin 22.5)A600立方寸 B610立方寸C620立方寸 D633立方寸答案D解析如图,AB10(寸),则AD5(寸),CD1(寸),设圆O的半径为x(寸),则OD(x1)(寸),在RtADO中,由勾股定理可得52(x1)2x2,解得x13(寸)sinAOD,即AOD22.5,则AOB45.则弓形的面积S13210126.33(平方寸)则该木材镶嵌在墙中的体积约为V6.33100633(立方寸)故选D.12鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、 前后完全对称从外表上看,六根等长的正四棱柱体分成三组, 经90榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为_(容器壁的厚度忽略不计)答案41解析由题意,该球形容器的半径的最小值为,该球形容器的表面积的最小值为441.13沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8 cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计)(1)如果该沙漏每秒钟漏下0.02 cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm)答案(1)开始时,沙漏上部分圆锥中的细沙的高为H8,底面半径为r4,Vr2H()239.71,V0.021 986(秒)所以沙全部漏入下部约需1 986秒(2)细沙漏入下部后,圆锥形沙堆的底面半径为4,设高为H,V42H,H2.4.锥形沙堆的高度约为2.4 cm.14九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑如图,在阳马PABCD中,侧棱PD底面ABCD,且PDCD,过棱PC的中点E,作EFPB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由(2)若面DEF与面ABCD所成二面角的大小为,求的值答案(1)证明如
收藏
编号:2712423
类型:共享资源
大小:950KB
格式:DOC
上传时间:2020-04-30
10
金币
- 关 键 词:
-
数学
中的
中国传统文化
问答题
汇编
- 资源描述:
-
#+
数学中的中国传统文化
一、算法问题
1.用更相减损术求294和84的最大公约数时,需要做减法的次数为( )
A.2 B.3
C.4 D.5
答案 C
解析 (84,294)→(84,210)→(84,126)→(84,42)→(42,42),一共做了4次减法.
2.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a为( )
A.4 B.2
C.0 D.14
答案 B
解析 由题意输出的a是18,14的最大公约数2,故选B.
3.用辗转相除法求459和357的最大公约数,需要做除法的次数是( )
A.1 B.2
C.3 D.4
答案 C
解析 ∵459357=1…102,
357102=3…51,
10251=2,
∴459和357的最大公约数是51,需要做除法的次数是3.
4.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,对于求一个n次多项式函数fn(x)=anxn+an-1xn-1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间,因此即使在今天该算法仍具有重要意义.运用秦九韶算法计算f(x)=0.5x6+4x5-x4+3x3-5x当x=3时的值时,最先计算的是( )
A.-53=-15
B.0.53+4=5.5
C.333-53=66
D.0.536+435=1 336.6
答案 B
解析 f(x)=0.5x6+4x5-x4+3x3-5x=(((((0.5x+4)x-1)x+3)x+0)x-5)x,
然后由内向外计算,最先计算的是0.53+4=5.5.
5.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为( )
A.4,2 B.5,3
C.5,2 D.6,2
答案 C
解析 ∵f(x)=((((4x)x)x-1)x)x+2,∴乘法要运算5次,加减法要运算2次.
6.已知函数f(x)=6x6+5,当x=x0时,用秦九韶算法求f(x0)的值,需要进行乘方、乘法、加法的次数分别为( )
A.21,6,2 B.7,1,2
C.0,1,2 D.0,6,1
答案 D
解析 ∵f(x)=6x6+5,
多项式的最高次项的次数是6,
∴要进行乘法运算的次数是6.
要进行加法运算的次数是1,
运算过程中不需要乘方运算.
7.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的a依次为2,2,5,x,n均为2,则输出的s等于( )
A.7 B.12
C.17 D.34
答案 C
解析 第一次运算,a=2,s=2,n=2,k=1,不满足k>n;
第二次运算,a=2,s=22+2=6,k=2,不满足k>n;
第三次运算,a=5,s=62+5=17,k=3,满足k>n,
输出s=17,故选C.
8.用秦九韶算法求多项式f(x)=x3-3x2+2x-11的值时,应把f(x)变形为( )
A.x3-(3x+2)x-11 B.(x-3)x2+(2x-11)
C.(x-1)(x-2)x-11 D.((x-3)x+2)x-11
答案 D
解析 f(x)=x3-3x2+2x-11=((x-3)x+2)x-11
9.用秦九韶算法求函数f(x)=3x5-2x4+2x3-4x2-7当x=2的值时,v3的结果是( )
A.4 B.10
C.16 D.33
答案 C
解析 函数f(x)=3x5-2x4+2x3-4x2-7=((((3x-2)x+2)x-4)x)x-7,
当x=2时,v0=3,v1=32-2=4,v2=42+2=10,v3=102-4=16.
10.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2的值,当x=-2时,v1的值为( )
A.1 B.7
C.-7 D.-5
答案 C
解析 ∵f(x)=x6-5x5+6x4+x2+0.3x+2=(((((x-5)x+6)x+0)x+1)x+0.3)x+2,
∴v0=a6=1, v1=v0x+a5=1(-2)-5=-7.
11.利用秦九韶算法求多项式f(x)=-6x4+5x3+2x+6的值,当x=3时,v3的值为( )
A.-486 B.-351
C.-115 D.-339
答案 C
解析 f(x)=-6x4+5x3+2x+6=(((-6x+5)x+0)x+2)x+6,
∴v0=a4=-6,
v1=v0x+a3=-63+5=-13,
v2=v1x+a2=-133+0=-39,
v3=v2x+a1=-393+2=-115.
12.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为4,3,则输出v的值为( )
A.20 B.61
C.183 D.548
答案 C
解析 由程序框图知,初始值:n=4,x=3,v=1,i=3,第一次循环:v=6,i=2;第二次循环:v=20,i=1;第三次循环:v=61,i=0;第四次循环:v=183,i=1.结束循环,输出当前v的值183.
13.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天?( )
A.1 326 B.510 C.429 D.336
答案 B
解析 由题意满七进一,可得该图示为七进制数,
化为十进制数为173+372+27+6=510.
14.用秦九韶算法计算多项式f(x)=5x5+4x4+3x3+2x2+x+1,乘法运算次数为____________.加法运算次数为________.
答案 5 5
解析 ∵f(x)=((((5x+4)x+3)x+2)x+1)x+1,
∴乘法要运算5次,加法要运算5次
15.若f(x)=x4+3x3+x+1,用秦九韶算法计算f(π)时,需要乘法m次,加法n次,则m+n=________.
答案 6
解析 f(x)=x4+3x3+x+1=(((x+3)x)x+1)x+1,
用秦九韶算法计算f(π)时,乘法运算与加法运算的次数和等于6.
16.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为和 (a,b,c,d∈N*),则是x的更为精确的不足近似值或过剩近似值.我们知道π=3.141 59…,若令<π<,则第一次用“调日法”后得是π的更为精确的过剩近似值,即<π<,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为________.
答案
17.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 中“…”即代表无限次重复,但原式却是个定值x.这可以通过方程=x确定x=2,则1+=________.
答案
解析 由题意,可令1+=x,即1+=x,即x2-x-1=0,解得x=(x=舍),故1+=.
18.用辗转相除法求840与1 764的最大公约数.
答案 1 764=8402+84,840=8410+0,
∴840与1 764的最大公约数是84.
19.用更相减损术求440 与556的最大公约数.
答案 556-440=116,440-116=324,324-116=208,
208-116=92,116-92=24,92-24=68,
68-24=44,44-24=20,24-20=4,20-4=16,
16-4=12,12-4=8,8-4=4,
∴440与556的最大公约数4.
20.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.
答案 f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x
v0=7,
v1=73+6=27,
v2=273+5=86,
v3=863+4=262,
v4=2623+3=789,
v5=7893+2=2 369,
v6=2 3693+1=7 108,
v7=7 1083+0=21 324,
∴f(3)=21 324,
即当x=3时,函数值是21 324.
21.(1)用辗转相除法求840与1 785的最大公约数;
(2)用秦九韶算法计算函数f(x)=2x4+3x3+5x-4在x=2时的函数值.
答案 (1)1 785=8402+105,840=1058+0,
∴840与1 785的最大公约数是105.
(2)秦九韶算法如下:f(x)=2x4+3x3+5x-4=x(2x3+3x2+5)-4=x[x(2x2+3x)+5]-4=x{x[x(2x+3)]+5}-4,故当x=2时,f(x)=2{2[2(22+3)]+5}-4=62.
22.(1)用辗转相除法求779与247的最大公约数;
(2)利用秦九韶算法求多项式f(x)=2x5+4x4-2x3+8x2+7x+4当x=3时的值.
答案 (1)779=2473+38,
247=386+19,
38=192.
故779与247的最大公约数是19;
(2)把多项式改成如下形式:
f(x)=2x5+4x4-2x3+8x2+7x+4=((((2x+4)x-2)x+8)x+7)x+4.
按照从内到外的顺序,依次计算一次多项式当x=3时的值:v0=2,
v1=v0x+4=23+4=10,
v2=v1x-2=103-2=28,
v3=v2x+8=283+8=92,
v4=v3x+7=923+7=283,
v5=v4x+4=2833+4=853.
所以当x=3时,多项式f(x)的值是853.
23.(1)用辗转相除法求228与1 995的最大公约数;
(2)用秦九韶算法求多项式f(x)=3x5+2x3-8x+5在x=2时的值.
答案 (1)1 995=2288+171,
228=1711+57,
171=573,
因此57是1 995与228的最大公约数.
(2)f(x)=3x5+2x3-8x+5=((((3x+0)x+2)x+0)x-8)x+5
当x=2时,
v0=3,
v1=32=6,
v2=62+2=14,
v3=142=28,
v4=282-8=48,
v5=482+5=101,
所以当x=2时,多项式的值是101.
24.(1)用“更相减损术”求72和168的最大公约数;
(2)用“辗转相除法”求98和280的最大公约数.
答案 (1)∵168-72=96,
96-72=24,
72-24=48,
48-24=24,
故72和168的最大公约数是24.
(2)∵280=298+84,
98=184+14,
84=614,
故98和280的最大公约数是14.
25.用秦九韶算法求函数f(x)=x5+x3+x2+x+1当x=3时的函数值.
答案 f(x)=x5+x3+x2+x+1=((((x+0)x+1)x+1)x+1)x+1,
当x=3时,
v0=1,
v1=v03+0=3;
v2=v13+1=10;
v3=v23+1=31;
v4=v33+1=94;
v5=v43+1=283,
即x=3时的函数值为283.
二、数列问题
1.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )
A.钱 B.钱
C.钱 D.钱
答案 B
解析 依题意设甲、乙、丙、丁、戊所得钱分别为a-2d,
a-d,a,a+d,a+2d,
则由题意可知,a-2d+a-d=a+a+d+a+2d,即a=-6d,
又a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,
则a-2d=a-2(-)=a=.
2.南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中间三人未到者,亦依等次更给.问:每等人比下等人多得几斤?”( )
A. B.
C. D.
答案 B
解析 设第十等人得金a1斤,第九等人得金a2斤,以此类推,第一等人得金a10斤,
则数列{an}构成等差数列,设公差为d,则每一等人比下一等人多得d斤金,
由题意得,即解得d=,
∴每一等人比下一等人多得斤金.
3.《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布约有( )
A.0.55尺 B.0.53尺
C.0.52尺 D.0.5尺
答案 A
解析 设每天多织d尺,由题意a1=5,{an}是等差数列,公差为d,
∴S30=305+d=390,
解得d≈0.55.
4.《张丘建算经》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日,第五日,第八日所织之和为十五尺,问第九日所织尺数为( )
A.7 B.9
C.11 D.13
答案 D
解析 设第一天织a1尺,从第二天起每天比第一天多织d尺,
由已知得
解得a1=-3,d=2,
∴第九日所织尺数为a9=a1+8d=-3+82=13.
5.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?” 意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据已知条件,可求得该女子第3天所织布的尺数为( )
A. B.
C. D.
答案 C
解析 由题意可得:每天织布的量组成了等比数列{an},S5=5,公比q=2 ,=5,
计算可得a1=,所以a3=22=.
6.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )
A.33% B.49%
C.62% D.88%
答案 B
解析 由题意可得:每日的织布量形成等差数列{an},
且a1=5,a30=1,
设公差为d,则1=5+29d,解得d=-.
∴S10=510+(-)=.
S30==90.
∴该女子到第10日时,大约已经完成三十日织布总量的≈0.49=49%.
7.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布( )
A.30尺 B.90尺
C.150尺 D.180尺
答案 B
解析 由题意可得,每日的织布量形成等差数列{an},
且a1=5,a30=1,
所以S30==90.
8.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )
A.9日 B.8日
C.16日 D.12日
答案 A
解析 由题意知,良马每日行的距离成等差数列,
记为{an},其中a1=103,d=13;
驽马每日行的距离成等差数列,
记为{bn},其中b1=97,d=-0.5;
设第m天相逢,则a1+a2+…+am+b1+b2+…+bm
=103m++97m+
=21 125,
解得m=9(负值舍去).
9.《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为( )
A.升 B.升 C.升 D.升
答案 A
解析 自上而下依次设各节容积为a1,a2,…a9,
由题意得,即,得,
所以a2+a3+a8=+=(升).
10.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )
A.24里 B.48里 C.96里 D.192里
答案 C
解析 由题意可知此人每天走的步数构成以为公比的等比数列,
由题意和等比数列的求和公式可得=378,解得a1=192,
∴第二天此人走了192=96里.
11.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( )
A.24里 B.12里
C.6里 D.3里
答案 C
解析 记每天走的路程里数为{an},可知{an}是公比q=的等比数列,
由S6=378,得S6==378,解得a1=192,∴a6=192=6.
12.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一段截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( )
A.6斤 B.9斤
C.10斤 D.12斤
答案 B
解析 此问题构成一个等差数列{an},
设首项为2,则a5=4,∴中间3尺的重量为3a3=3=3=9(斤),
故选B.
13.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )
A.6斤 B.9斤
C.9.5斤 D.12 斤
答案 A
解析 依题意,金箠由粗到细各尺构成一个等差数列,
设首项a1=4,则a5=2,由等差数列性质得a2+a4=a1+a5=6,
所以第二尺与第四尺的重量之和为6斤.
14.《算法通宗》是我国古代内容丰富的数学名书,书中有如下问题:“远望巍巍塔七层,红灯向下倍加增,共灯三百八十一,请问塔顶几盏灯?”其意思为“一座塔共七层,从塔顶至塔底,每层灯的数目都是上一层的2倍,已知这座塔共有381盏灯,请问塔顶有几盏灯?”( )
A.3 B.4
C.5 D.6
答案 A
解析 由题意设塔顶有a盏灯,由题意由上往下数第n层就有2n-1a盏灯,
∴共有(1+2+4+8+16+32+64)a=381盏灯,
即a=381.
解得a=3.
15.我国古代数典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.( )
A.3 B.4
C.5 D.6
答案 B
解析 由题意可知,大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,
前n天打洞之和为=2n-1,
同理,小老鼠前n天打洞之和为=2-,
∴2n-1+2-=10,解得n∈(3,4),取n=4.
即两鼠在第4天相逢.
16.如图是谢宾斯基(Sierpinsiki)三角形,在所给的四个三角形图案中,着色的小三角形个数构成数列{an}的前4项,则{an}的通项公式可以是( )
A.an=3n-1 B.an=2n-1
C.an=3n D.an=2n-1
答案 A
解析 着色的小三角形个数构成数列{an}的前4项,分别为a1=1,a2=3,a3=33=32,a4=323,因此{an}的通项公式可以是an=3n-1.
17.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列.上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.
答案
解析 设该数列{an}的首项为a1,公差为d,
依题意
即解得
则a5=a1+4d=a1+7d-3d=-=.
18.华罗庚数学小组的同学们在图书馆发现一块古代楔形文字泥板的图片,同学们猜测它是一种乘法表的记录,请你根据这个猜测,判定表示________?(如图)
答案 395
解析 图片中记录的是自然数乘以9的运算结果,左列是被乘数,右列是该数乘以9的积数,经过分析可知:其中▽代表1,⊲代表10,代表60.
所以表示606+103+51=395.
19.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图A所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle),如图A.17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图B.在杨辉三角中相邻两行满足关系式:C+C=C,其中n是行数,r∈N.
请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是________.
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
…
C C … C … C C
图A
……
图B
答案 =+
解析 类比观察得,莱布尼茨三角形的每一行都能提出倍数,而相邻两项之和是上一行的两者相拱之数,所以类比式子C+C=C,
有=+.
20.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面用点或用小石子表示数.他们研究过如图所示的三角形数,将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn}.可以推测:
(1)b2 012是数列{an}中的第________项;
(2)b2k-1=________.(用k表示)
答案 (1)5 030 (2)
解析 由题意可得an=1+2+3+…+n=,n∈N*,
故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,
由上述规律可知:b2k=a5k=(k∈N*),
b2k-1=a5k-1==,
故b2 012=b21 006=a51 006=a5 030,
即b2 012是数列{an}中的第5 030项.
21.请认真阅读下列材料:
“杨辉三角” (1261年)是中国古代重要的数学成就,它比西方的“帕斯卡三角”(1653年)早了300多年(如图1).在“杨辉三角”的基础上德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),称为莱布尼兹三角形(如图2)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
… …
图1
… …
图2
请回答下列问题:
(1)记Sn为图1中第n行各个数字之和,求S4,S7,并归纳出Sn;
(2)根据图2前5行的规律依次写出第6行的数.
答案 (1)S4=8=23;
S7=64=26;
Sn=2n-1.
(2)图中每个数字都是其两脚的数字和,
故第6行为 .
三、空间几何体
1.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是( )寸.
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)
A.1 B.2 C.3 D.4
答案 C
解析 如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.
∵积水深9寸,
∴水面半径为(14+6)=10寸,
则盆中水的体积为π9(62+102+610)=588π(立方寸).
∴平地降雨量等于=3(寸).
故选C.
2.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=(底面的圆周长的平方高).则由此可推得圆周率π的取值为(注:1丈=10尺)( )
A.3 B.3.14
C.3.2 D.3.3
答案 A
解析 由题意,圆柱体底面的圆周长48尺,高11尺,
∵圆堡瑽(圆柱体)的体积V=(底面的圆周长的平方高),
∴V=(48211)=2 112,
设底面圆的半径为R,∴
∴π=3.
3.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺3寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底圆周长约为( )
A.1丈3尺 B.5丈4尺
C.9丈2尺 D.48丈6尺
答案 B
解析 设圆柱形谷仓底面半径为r尺,
由题意得,谷仓高h=尺.
于是谷仓的体积V=πr2h≈2 0001.62,
解得r≈9.
∴圆柱底圆周长约为2πr≈54尺=5丈4尺.
4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为( )
A. B.
C. D.
答案 B
解析 由题意知L2h≈πr2h⇒L2≈πr2,而L=2πr,代入得π≈.
5.在《九章算术》中,将有三条棱互相平行且有一个面为梯形的五面体称之为羡除,现有一个羡除如图所示,面ABCD、面ABFE、面CDEF均为等腰梯形,AB∥CD∥EF,AB=6,CD=8,EF=10,EF到面ABCD的距离为3,CD与AB间的距离为10,则这个羡除的体积是( )
A.110 B.116
C.118 D.120
答案 D
解析 过A作AP⊥CD,AM⊥EF,过B作BQ⊥CD,BN⊥EF,垂足分别为P,M,Q,N,
将一侧的几何体放到另一侧,组成一个直三棱柱,底面积为103=15.
棱柱的高为8,∴V=158=120.
故选D.
6.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为.后人导出了“牟合方盖”的体积计算公式,即V牟=r3-V方盖差,r为球的半径,也即正方形的棱长均为2r,从而计算出V球=πr3.记所有棱长都为r的正四棱锥的体积为V正,棱长为2r的正方形的方盖差为V方盖差,则等于( )
A. B.
C. D.
答案 C
解析 由题意,V方盖差=r3-V牟=r3-πr3=r3,
所有棱长都为r的正四棱锥的体积为
V正=rr =r3,
∴==.
7.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是( )
A.a,b B.a,c
C.c,b D.b,d
答案 A
解析 由直观图可知,其正视图与侧视图完全相同,则其只能是圆,这时其俯视图就是正方形加对角线(实线).
故选A.
8.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4∶π,即V牟:V球=4∶π.也导出了“牟合方盖”的体积计算公式,即V牟=r3-V方盖差,从而计算出V球=πr3.记所有棱长都为r的正四棱锥的体积为V正,则( )
A.V方盖差>V正
B.V方盖差=V正
C.V方盖差<V正
D.以上三种情况都有可能
答案 A
解析 由题意,V方盖差=r3-V牟=r3-πr3=r3,
所有棱长都为r的正四棱锥的体积为V正=rr =r3,
∴V方盖差>V正.
9.我国古代数学名著《数学九章》 中有云:“今有木长二丈四尺,围之五尺.葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈等于10尺)( )
A.29尺 B.24尺
C.26尺 D.30尺
答案 C
解析 由题意,圆柱的侧面展开图是矩形,一条直角边(即木棍的高)长24尺,另一条直角边长52=10(尺),因此葛藤长=26(尺).
10.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为9尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )
A.14斛 B.28斛
C.36斛 D.66斛
答案 B
解析 设圆锥的底面半径为r,则r=9,解得r=,
故米堆的体积为π()25≈45,
∵1斛米的体积约为1.62立方,
∴堆放的米有451.62≈28斛.
11.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为( )
(注:1丈=10尺=100寸,π≈3.14,sin 22.5≈)
A.600立方寸 B.610立方寸
C.620立方寸 D.633立方寸
答案 D
解析 如图,
AB=10(寸),则AD=5(寸),CD=1(寸),
设圆O的半径为x(寸),则OD=(x-1)(寸),
在Rt△ADO中,由勾股定理可得52+(x-1)2=x2,
解得x=13(寸).
∴sin∠AOD==,
即∠AOD≈22.5,则∠AOB=45.
则弓形的面积S=132-1012
≈6.33(平方寸).
则该木材镶嵌在墙中的体积约为V=6.33100
=633(立方寸).
故选D.
12.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、 前后完全对称.从外表上看,六根等长的正四棱柱体分成三组, 经90榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为________.(容器壁的厚度忽略不计)
答案 41π
解析 由题意,该球形容器的半径的最小值为=,
∴该球形容器的表面积的最小值为4π=41π.
13.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8 cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).
(1)如果该沙漏每秒钟漏下0.02 cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?
(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).
答案 (1)开始时,沙漏上部分圆锥中的细沙的高为
H=8=,底面半径为r=4=,
V=πr2H=π()2=39.71,
V0.02=1 986(秒).
所以沙全部漏入下部约需1 986秒.
(2)细沙漏入下部后,圆锥形沙堆的底面半径为4,
设高为H′,
V=π42H′=π,
H′=≈2.4.
锥形沙堆的高度约为2.4 cm.
14.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.
(2)若面DEF与面ABCD所成二面角的大小为,求的值.
答案 (1)证明 如
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。