概率论和数理统计复旦大学课后题地答案解析(全).doc

收藏

编号:2712761    类型:共享资源    大小:3.57MB    格式:DOC    上传时间:2020-04-30
17
金币
关 键 词:
概率论 以及 数理统计 复旦大学 课后 答案 谜底 解析
资源描述:
#+ 1 概率论与数理统计习题及答案 习题 一 1.略.见教材习题参考答案. 2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1) A发生,B,C都不发生; (2) A与B发生,C不发生; (3) A,B,C都发生; (4) A,B,C至少有一个发生; (5) A,B,C都不发生; (6) A,B,C不都发生; (7) A,B,C至多有2个发生; (8) A,B,C至少有2个发生. 【解】(1) A (2) AB (3) ABC (4) A∪B∪C=C∪B∪A∪BC∪AC∪AB∪ABC= (5) = (6) (7) BC∪AC∪AB∪C∪A∪B∪==∪∪ (8) AB∪BC∪CA=AB∪AC∪BC∪ABC 3.略.见教材习题参考答案 4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(). 【解】 P()=1-P(AB)=1-[P(A)-P(A-B)] =1-[0.7-0.3]=0.6 5.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求: (1) 在什么条件下P(AB)取到最大值? (2) 在什么条件下P(AB)取到最小值? 【解】(1) 当AB=A时,P(AB)取到最大值为0.6. (2) 当A∪B=Ω时,P(AB)取到最小值为0.3. 6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率. 【解】 P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC) =++-= 7.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】 p= 8.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P(A1)==()5 (亦可用独立性求解,下同) (2) 设A2={五个人生日都不在星期日},有利事件数为65,故 P(A2)==()5 (3) 设A3={五个人的生日不都在星期日} P(A3)=1-P(A1)=1-()5 9.略.见教材习题参考答案. 10.一批产品共N件,其中M件正品.从中随机地取出n件(n30.如图阴影部分所示. 22.从(0,1)中随机地取两个数,求: (1) 两个数之和小于的概率; (2) 两个数之积小于的概率. 【解】 设两数为x,y,则0乙反) 由对称性知P(甲正>乙正)=P(甲反>乙反) 因此P(甲正>乙正)= 46.证明“确定的原则”(Sure-thing):若P(A|C)≥P(B|C),P(A|)≥P(B|),则P(A)≥P(B). 【证】由P(A|C)≥P(B|C),得 即有 同理由 得 故 47.一列火车共有n节车厢,有k(k≥n)个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率. 【解】 设Ai={第i节车厢是空的},(i=1,…,n),则 其中i1,i2,…,in-1是1,2,…,n中的任n-1个. 显然n节车厢全空的概率是零,于是 故所求概率为 48.设随机试验中,某一事件A出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A迟早会出现的概率为1. 【证】 在前n次试验中,A至少出现一次的概率为 49.袋中装有m只正品硬币,n只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A={投掷硬币r次都得到国徽} B={这只硬币为正品} 由题知 则由贝叶斯公式知 50.巴拿赫(Banach)火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r根的概率又有多少? 【解】以B1、B2记火柴取自不同两盒的事件,则有.(1)发现一盒已空,另一盒恰剩r根,说明已取了2n-r次,设n次取自B1盒(已空),n-r次取自B2盒,第2n-r+1次拿起B1,发现已空。把取2n-r次火柴视作2n-r重贝努里试验,则所求概率为 式中2反映B1与B2盒的对称性(即也可以是B2盒先取空). (2) 前2n-r-1次取火柴,有n-1次取自B1盒,n-r次取自B2盒,第2n-r次取自B1盒,故概率为 51.求n重贝努里试验中A出现奇数次的概率. 【解】 设在一次试验中A出现的概率为p.则由 以上两式相减得所求概率为 若要求在n重贝努里试验中A出现偶数次的概率,则只要将两式相加,即得 . 52.设A,B是任意两个随机事件,求P{(+B)(A+B)(+)(A+)}的值. 【解】因为(A∪B)∩(∪)=A∪B (∪B)∩(A∪)=AB∪ 所求  故所求值为0. 53.设两两相互独立的三事件,A,B和C满足条件: ABC=F,P(A)=P(B)=P(C)< 1/2,且P(A∪B∪C)=9/16,求P(A). 【解】由 故或,按题设P(A)<,故P(A)=. 54.设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生的概率与B发生A不发生的概率相等,求P(A). 【解】 ① ② 故 故 ③ 由A,B的独立性,及①、③式有 故 故 或(舍去) 即P(A)=. 55.随机地向半圆00,P(A|B)=1,试比较P(A∪B)与P(A)的大小. (2006研考) 解:因为 所以 . 习题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律. 【解】 故所求分布律为 X 3 4 5 P 0.1 0.3 0.6 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求: (1) X的分布律; (2) X的分布函数并作图; (3) . 【解】 故X的分布律为 X 0 1 2 P (2) 当x<0时,F(x)=P(X≤x)=0 当0≤x<1时,F(x)=P(X≤x)=P(X=0)= 当1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)= 当x≥2时,F(x)=P(X≤x)=1 故X的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X表示击中目标的次数.则X=0,1,2,3. 故X的分布律为 X 0 1 2 3 P 0.008 0.096 0.384 0.512 分布函数 4.(1) 设随机变量X的分布律为 P{X=k}=, 其中k=0,1,2,…,λ>0为常数,试确定常数a. (2) 设随机变量X的分布律为 P{X=k}=a/N, k=1,2,…,N, 试确定常数a. 【解】(1) 由分布律的性质知 故 (2) 由分布律的性质知 即 . 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7) (1) + (2) =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X为某一时刻需立即降落的飞机数,则X~b(200,0.02),设机场需配备N条跑道,则有 即 利用泊松近似 查表得N≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X表示出事故的次数,则X~b(1000,0.0001) 8.已知在五重贝努里试验中成功的次数X满足P{X=1}=P{X=2},求概率P{X=4}. 【解】设在每次试验中成功的概率为p,则 故 所以 . 9.设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X表示5次独立试验中A发生的次数,则X~6(5,0.3) (2) 令Y表示7次独立试验中A发生的次数,则Y~b(7,0.3) 10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1) (2) 11.设P{X=k}=, k=0,1,2 P{Y=m}=, m=0,1,2,3,4 分别为随机变量X,Y的概率分布,如果已知P{X≥1}=,试求P{Y≥1}. 【解】因为,故. 而 故得 即 从而 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率. 【解】令X为2000册书中错误的册数,则X~b(2000,0.001).利用泊松近似计算, 得 13.进行某种试验,成功的概率为,失败的概率为.以X表示试验首次成功所需试验的次数,试写出X的分布律,并计算X取偶数的概率. 【解】 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率; (2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑. (1) 在1月1日,保险公司总收入为250012=30000元. 设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为 由于n很大,p很小,λ=np=5,故用泊松近似,有 (2) P(保险公司获利不少于10000) 即保险公司获利不少于10000元的概率在98%以上 P(保险公司获利不少于20000) 即保险公司获利不少于20000元的概率约为62% 15.已知随机变量X的密度函数为 f(x)=Ae-|x|, -∞a时,F(x)=1 即分布函数 18.设随机变量X在[2,5]上服从均匀分布.现对X进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X~U[2,5],即 故所求概率为 19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}. 【解】依题意知,即其密度函数为 该顾客未等到服务而离开的概率为 ,即其分布律为 20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N(50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N(40,102),则 若走第二条路,X~N(50,42),则 ++ 故走第二条路乘上火车的把握大些. (2) 若X~N(40,102),则 若X~N(50,42),则 故走第一条路乘上火车的把握大些. 21.设X~N(3,22), (1) 求P{20; (2) f(x)= 试确定常数a,b,并求其分布函数F(x). 【解】(1) 由知 故 即密度函数为 当x≤0时 当x>0时 故其分布函数 (2) 由 得 b=1 即X的密度函数为 当x≤0时F(x)=0 当0
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:概率论和数理统计复旦大学课后题地答案解析(全).doc
链接地址:https://www.taowenge.com/p-2712761.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开