数学建模大赛-货物运输问题.doc
《数学建模大赛-货物运输问题.doc》由会员分享,可在线阅读,更多相关《数学建模大赛-货物运输问题.doc(76页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date数学建模大赛-货物运输问题货物配送问题货物配送问题【摘要】本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次
2、安排的优化分析,得出公司顺时针送货,公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.5007小时,费用为4685.6元。针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.063小时,费用为4374.4元。针对问题三的第一小问,我们知
3、道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所以认为车辆可以掉头。然后我们仍旧采取公司顺时针送货,公司逆时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在16吨内,则用6吨货车运输,若在78吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为19.6844小时,费用为4403.2。一、 问题重述某地区有8个公司(如图一编号至),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号)
4、分别运往各个公司。路线是唯一的双向道路(如图)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表)。 问题: 1、货运
5、公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。 2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数?应如何调度?3、(1)如果有载重量为4吨、6吨、8吨三种运输车,载重运费都是1.8元/吨公里,空载费用分别为0.2,0.4,0.7元/公里,其他费用一样,又如何安排车辆数和调度方案?(2)当各个公司间都有或者部分有道路直接相通时,分析运输调度的难度所在,给出你的解决问题的想法(可结合实际情况深入分析)。图唯一的运输路线图和里程数公司材料A41231025B15012423C52424351 表各公
6、司所需要的货物量二、模型假设1) 港口的容量足够大,多辆运输车同时到达港口时不会发生阻塞现象;2) 多辆运输车可以在港口同时装车,不必等待;3) 双向道路上没有塞车现象;4) 8个公司之间没有优先级别,货运公司只要满足他们的需求量就可以;货车完成他们日常的送货任务之后,回到港口。5) 假设运输车不会因天气状况,而影响其行驶速度,和装载、卸载时间。6) 运输路不会影响运输车行驶速度。7) 运输车正常出车。三、问题分析运输过程的最大特点是三种原料重量不同,分为大小件,当大小件同车,卸货时必须先卸小件,而且不允许卸下来的材料再装上车,要区别对待运输途中是否可以调头的费用。在问题一中,运输途中不能调头
7、,整个送货路线是一个环形闭合回路,如果沿着某一方向同时给多家公司送货时,运输车必须为距离港口近的公司卸下小件,为距离港口远的公司运送大件;而在问题二中,运输途中可以调头,可以首先为远处公司运送小件,在返回途中为距离较近的公司卸下大件。从表面上看,这样运输能够节省车次,降低出车费用。但我们通过分析,在本题中,载重调头运输并不能降低费用。运费最小是货运公司调度运输车的目标,运费包括派车固定成本、从港口出车成本、载重费用和空载费用。建立模型时,要注意以下几方面的问题:目标层:如果将调度车数、车次以及每车次的载重和卸货点都设为变量,模型中变量过多,不易求解。由于各辆运输车之间相互独立,可以将目标转化为
8、两个阶段的求解过程,第一阶段是规划车次阶段,求解车次总数和每车次的装卸方案;第二阶段是车辆调度阶段,安排尽量少的车辆数,每车次尽量满载,使总的运费最小。约束层:(1) 运输车可以从顺时针或者逆时针方向送货,要考虑不同方向时的载重用;(2) 大小件的卸车顺序要求不同原料搭配运输时,沿途必须有序卸货;(3) 每车次的送货量不能超过运输车的最大载重量;(4) 满足各公司当日需求。四、符号说明和名词约定符号含义单位备注S1(n)从港口到各个公司的货运最短里程集公里n=1、2、8;S2(n)卸载后返回港口的最短空载里程集公里n=1、2、8;Q(i)(n)n公司对货物i的实时需求量集单位/天n=1、2、8
9、;i=A、B、C;W(j)(n)第j批运至第n公司货物的重量集吨n=1、2、8;j=1、2;Times(j)(n)第j批运至第n公司次数集次n=1、2、8;j=1、2Yj(n)第j批运至第n公司的费用集元n=1、2、8;j=1、2;Y(d)第d问中组合运输的费用集元d=1、2、3;Charge(d) 第d问中所有的运输费用集元d=1、2、3;TT(d)第d问中组合运输的耗时集小时d=1、2、3;Time(d)第d问中所有的运输耗时集小时d=1、2、3;五、建立模型一、 问题一i. 车次规划模型的分析车次规划阶段只涉及到载重费用、空载费用和港口出车费用。运输途中不能掉头,所以每车次都是沿闭合回路
10、绕圈行驶。1) 运输途中不能掉头,所以为某些公司送货时,运输车从港口出发,按顺时针方向沿闭合回路绕行,为其它公司送货时,按逆时针方向沿闭合回路绕行。公司和港口之间存在顺时针距离和逆时针距离,如下表:公司编号顺时针距离815242937454955逆时针距离524536312315115由表可知,运输过程中不可以掉头,为使得货运费用最低,我们按照问题分析中给出的最佳运输路径进行货物的分配运输。即若港口按顺时针和逆时针两个不同方向出发,根据货运里程短,点为顺时针货运方向最远点,也是空载回港口的最近点,根据货运里程短,点为逆时针货运方向最远点,也是空载回港口的最近点。结论:在符合载重相对最大化情况下
11、,公司顺时针送货为最佳方案,公司逆时针送货最佳方案。如下图所示:2) 根据3种原料的重量和运输车的最大运载量可以看出,A和C可以搭配运输,B和C可以搭配运输,而A与B不能同车运输。不论是以顺时针方向送货还是以逆时针方向送货,当大小件搭配运输时,必须首先卸下小件,在后续公司卸下大件。我们把这种特点总结如下:1、若在第j个公司卸下的是大件A,说明本车次的货物已经卸完,不能够再为后续公司运送小件C(A与B不能同车运输,更不可能有B);2、若在第j个公司卸下的是B,说明本车次的货物已经卸完,不能够再为后续公司运送小件C。ii. 模型建立基于以上约束条件建立如下模型:第一步:根据车载重相对最大化的基本思
12、想。可以分为两小步:分为两种满载方案:第1种为每个车次装载1单位A和2单位C;第2种是每个车次装载2个单位B。并使每一车次在同一公司卸货。满载运载方案如下表1:表1车辆车次数公司货物时间(小时)运费(元)各车工作时间(小时)111A,2C1.4167107.27.083521A,2C1.4167107.232A,2C1.416718043A,2C1.4167273.653A,2C1.4167273.6264A,2C1.4167325.67.083575A,2C1.4167263.287A,2C1.4167138.497A,2C1.4167138.41022B1.416718031122B1.4
13、1671807.08351252B1.4167263.21362B1.41671801462B1.41671801572B1.4167138.441682B1.416776对于剩下各公司所需要货物单位数量如下表:材料 A20020005B11010001C10002311第二步:我们采用批次运输方案:第一批次运输,我们使A材料有优先运输权,在保证满足各公司对A需求量条件下,1C与1A搭配满足载重相对最大化方法运输;第二批次运输,我们使B材料有优先运输权,在此次运输我们满足各公司尚缺B材料的量小于或等于2个单位;第三批次运输剩下所需的货物。具体运输方式:首先优先考虑A货物的处理方法,可知1公司还
14、需1个车次的1A和一个车次的1A1C,4公司还需要2个车次的1A,8公司还需要4个车次的1A和1个车次的1A1C;接着处理B货物,1公司和2公司共需要1个车次的2B,8公司和4公司共需要1个车次的2B;最后处理C货物,5、6、7公司共需要1个车次的6C。由此可知共出车28次。如下表2:表2车辆车次数公司货物时间(小时)运费(元)各车工作时间(小时)41682B1.4167767.0835178A,C1.416767188A1.416758198A1.416758208A1.4167585218A1.4167586.1334221A,C1.416792.8231A1.416778.4241,22
15、B1.5833142.26254A1.4167221.26.0333264A1.4167221.2277,6,56C1.75198.4288,42B1.58332062) 根据1)和2)的结论及方法,不记派车成本和出车成本的28车次方案所需运费及时间如下表3:表3车辆车次数公司货物时间(小时)运费(元)各车工作时间(小时)111A,2C1.4167107.27.083521A,2C1.4167107.232A,2C1.416718043A,2C1.4167273.653A,2C1.4167273.6264A,2C1.4167325.67.083575A,2C1.4167263.287A,2C1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 大赛 货物运输 问题
限制150内