2022年高考数学重点难点易错知识点总结复习及例题讲解一 .pdf
《2022年高考数学重点难点易错知识点总结复习及例题讲解一 .pdf》由会员分享,可在线阅读,更多相关《2022年高考数学重点难点易错知识点总结复习及例题讲解一 .pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载高考数学重点难点易错点复习(1) :集合的思想及应用集合是高中数学的基本知识, 为历年必考内容之一, 主要考查对集合基本概念的认识和理解, 以及作为工具, 考查集合语言和集合思想的运用. 本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用. 难点磁场 ( )已知集合A=(x,y)|x2+mxy+2=0,B=(x,y)|xy+1=0,且0 x2, 如果AB, 求实数m的取值范围 . 案例探究例 1设A=(x,y)|y2x1=0,B=(x,y)|4x2+2x2y+5=0,C=(x,y)|y=kx+b, 是否存在k、bN, 使得(AB)C=,证明此结
2、论 .命题意图: 本题主要考查考生对集合及其符号的分析转化能力, 即能从集合符号上分辨出所考查的知识点,进而解决问题 . 属级题目 . 知识依托: 解决此题的闪光点是将条件 (AB) C=转化为AC=且BC=, 这样难度就降低了 .错解分析:此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手. 技巧与方法:由集合A与集合B中的方程联立构成方程组, 用判别式对根的情况进行限制,可得到b、k的范围,又因b、kN,进而可得值 . 解:(AB)C=,AC=且BC=k2x2+(2bk1)x+b21=0AC=1=(2bk1)24k2(b21)04k24bk+10,即
3、b21 4x2+(22k)x+(5+2b)=0BC=,2=(1k)2 4(5精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 13 页学习必备欢迎下载2b)0k22k+8b190,从而8b20, 即b2.5 由及bN, 得b=2代入由 10和20组成的不等式组,得k=1, 故存在自然数k=1,b=2, 使得(AB)C=. 例2向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人. 问对A、
4、B都赞成的学生和都不赞成的学生各有多少人?命题意图:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握 . 本题主要强化学生的这种能力. 属级题目 . 知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来. (为锻炼您的习作能力,巩固复习效果,以下步骤请自行完成)高考数学重点难点复习(2) :充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系 .本节主要是通过不同的知识点来剖析充分必要条件的意义, 让考生能准确判定给定的两个命题的充要关系. 难点磁场 ( )已知关于x的实系数二次方程x2+ax
5、+b=0有两个实数根 、,证明: | |2 且| |2 是2|a|4+b且|b|0), 若?p是?q的必要而不充分条件,求实数m的取值范精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 13 页学习必备欢迎下载围. 命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性 .知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了 . 错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题
6、,学生本身存在着语言理解上的困难.技巧与方法: 利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决. 解:由题意知:命题:若?p是?q的必要而不充分条件的等价命题即逆否命题为:p是q的充分不必要条件 .p:|1 | 2212132x10q:x22x+1m20 x(1m) x(1+m)0 *p是q的充分不必要条件,不等式|1 | 2的解集是x22x+1m20(m0)解集的子集 . 又m0不等式 *的解集为 1mx1+m,m9,实数m的取值范围是 9,+.例2已知数列 an的前n项Sn=pn+q(p0,p1), 求数列 an 是等比数列
7、的充要条件 .命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性 . 知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n项和与通项之间的递推关系, 严格利用定义去判定. 错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明. 技巧与方法:由an=关系式去寻找an与an+1的比值,但同时要注意充分性的证明. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 13 页学习必备欢迎下载(为锻炼您的习作能力,巩固复习效果,以下步骤请自行完成) 高考数学重点难点复习(3) :
8、运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析, 解决一些相关问题 . 难点磁场 ( )三角形ABC中,A(5,1) 、B(1,7)、C(1,2),求: (1)BC边上的中线AM的长; (2) CAB的平分线AD的长;(3)cosABC的值.案例探究例 1如图,已知平行六面体ABCDA1B1C1D1ABCD是菱形,且C1CB=C1CD=BCD.(1) 求证:C1CBD.(2) 当的值为多少时,能使A1C平面C1BD?请给出证明 . 命题意图:本题主要考查考生应用向量法解决向量垂直, 夹角
9、等问题以及对立体几何图形的解读能力 . 知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单. 错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用abab=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1) 证明:设 =a, =b,=c, 依题意,|a|=|b| , 、中两两所成夹角为 ,于是 =ab,=c(ab)=cacb=|c| |a|cos |c| |b|cos =0, C1CBD.(2) 解:若使A1C精选学习资料 - - -
10、 - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 13 页学习必备欢迎下载平面C1BD,只须证A1CBD,A1CDC1,由=(a+b+c)(ac)=|a|2+abbc|c|2=|a|2 |c|2+|b| |a|cos |b| |c| cos=0,得当|a|=|c| 时,A1CDC1,同理可证当 |a|=|c| 时,A1CBD,=1时,A1C平面C1BD.高考数学重点难点复习(4) :三个“二次”及其关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容, 具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具. 高考试
11、题中近一半的试题与这三个“二次”问题有关 . 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法. 难点磁场已知对于x的所有实数值,二次函数f(x)=x24ax+2a+12(aR)的值都是非负的,求关于x的方程=|a1|+2的根的取值范围 . 案例探究例 1已知二次函数f(x)=ax2+bx+c和一次函数g(x)=bx,其中a、b、c满足abc,a+b+c=0,(a,b,cR ).(1)求证:两函数的图象交于不同的两点A、B;(2) 求线段AB在x轴上的射影A1B1的长的取值范围 .命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于题目 . 知识依托:
12、解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形” , 因而本题难点就是一些考生可能走入误区,老是想在“形”精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 13 页学习必备欢迎下载上找解问题的突破口,而忽略了“数”. 技巧与方法:利用方程思想巧妙转化 .(1) 证明:由消去y得ax2+2bx+c=0=4b24ac=4(ac)2 4ac=4(a2+ac+c2)=4(a+c2a+b+c=0,abc, a0,c0,0, 即两函数的图象交于不同的两点.(2) 解:设方程ax2+bx+c=0的两
13、根为x1和x2, 则x1+x2=,x1x2=.|A1B1|2=(x1x2)2=(x1+x2)24x1x2 (为锻炼您的习作能力,巩固复习效果,以下步骤请自行完成)高考数学重点难点复习(5) :求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视. 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 难点磁场 ( ) 已知f(2 cosx)=cos2x+cosx, 求f(x1). 案例探究例 1(1) 已知函数f(x) 满足f(logax)= (其中a0,a1,x0), 求f(x) 的表达式 .(2) 已知二次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学重点难点易错知识点总结复习及例题讲解一 2022 年高 数学 重点难点 知识点 总结 复习 例题 讲解
限制150内