高考理科数学集合汇编.docx
《高考理科数学集合汇编.docx》由会员分享,可在线阅读,更多相关《高考理科数学集合汇编.docx(132页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档 仅供参考 学习与交流高考理科数学集合汇编【精品文档】第 132 页普通高等学校招生全国统一考试理科数学目录全国卷I 3全国卷II 10全国卷III 16北京卷 22江苏卷 27四川卷 34天津卷 39山东卷 45参考答案 51绝密启封并使用完毕前2016年普通高等学校招生全国统一考试理科数学I注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至3页,第卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第卷一. 选择题:本大题共12小题,每小题5分,在每
2、小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,则(A)(B)(C)(D)(2)设,其中x,y是实数,则(A)1(B)(C)(D)2(3)已知等差数列前9项的和为27,则(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)1/3 (B)1/2 (C)2/3 (D)3/4(5)已知方程=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(1,3) (B)(1,) (C)(0,3) (D)(0,)(6)
3、如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17(B)18(C)20(D)28(7)函数y=2x2e|x|在2,2的图像大致为(A)(B)(C)(D)(8)若,则(A)(B)(C)(D)(9)执行右面的程序图,如果输入的,则输出x,y的值满足(A)(B)(C)(D)(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a/平面CB1D1,平面ABCD=m,平面
4、ABA1B1=n,则m、n所成角的正弦值为(A)(B) (C) (D)(12)已知函数为的零点,为图像的对称轴,且在单调,则的最大值为(A)11(B)9(C)7(D)5第II卷本卷包括必考题和选考题两部分.第(13)题第(21)题为必考题,每个试题考生都必须作答.第(22)题第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.(14)的展开式中,x3的系数是.(用数字填写答案)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2an的最大值为。(16)某高科技企业生
5、产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元。三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本题满分为12分)的内角A,B,C的对边分别别为a,b,c,已知(I)求C;(II)若的面积为,求的周长(18)(本题满分为12分)如图,在已A,B,C,D,E,F为顶点的五面体中,面A
6、BEF为正方形,AF=2FD,且二面角D-AF-E与二面角C-BE-F都是(I)证明平面ABEFEFDC;(II)求二面角E-BC-A的余弦值(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买
7、2台机器的同时购买的易损零件数.(I)求的分布列;(II)若要求,确定的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?(20) (本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,学科&网过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.(21)(本小题满分12分)已知函数有两个零点.(I)求a的取值范围;(II)设x1,x2是的两个零点,证明:+x20)的
8、直线交E于A,M两点,点N在E上,MANA.(I)当t=4,时,求AMN的面积;(II)当时,求k的取值范围.(21)(本小题满分12分)(I)讨论函数的单调性,并证明当0时,(II)证明:当时,函数有最小值.设g(x)的最小值为,求函数的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:集合证明选讲如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DFCE,垂足为F.(I) 证明:B,C,E,F四点共圆;(II)若AB=1,E为DA的中点,求四边形BCGF的面积. (
9、23)(本小题满分10分)选修44:坐标系与参数方程在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25.(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(II)直线l的参数方程是(t为参数),l与C交于A、B两点,AB=,求l的斜率。(24)(本小题满分10分),选修45:不等式选讲已知函数f(x)= x-+x+,M为不等式f(x) 2的解集.(I)求M;(II)证明:当a,bM时,a+b1+ab。绝密启封并使用完毕前 2016年普通高等学校招生全国统一考试理科数学III注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至3页,第卷3至5页.2
10、.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第卷三. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S=,则ST=(A) 2,3 (B)(-,23,+)(C)3,+) (D)(0,23,+)(2)若z=1+2i,则(A)1 (B) -1 (C) i (D)-i(3)已知向量,则ABC=(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达
11、图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个(5)若,则(A) (B) (C) 1 (D)(6)已知,则(A) (B)(C)(D)(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3(B)4(C)5(D)6(8)在中,BC边上的高等于,则(A)(B)(C)(D) (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,学.科.网则该多
12、面体的表面积为(A)(B)(C)90(D)81(10) 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是(A)4 (B)(C)6 (D)(11)已知O为坐标原点,F是椭圆C:的左焦点,学科&网A,B分别为C的左,右顶点.P为C上一点,且PFx轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A)(B)(C)(D)(12)定义“规范01数列”an如下:an共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A)18个 (B)
13、16个 (C)14个 (D)12个第II卷本卷包括必考题和选考题两部分.第(13)题第(21)题为必考题,每个试题考生都必须作答.第(22)题第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件 则z=x+y的最大值为_.(14)函数的图像可由函数的图像至少向右平移_个单位长度得到。(15)已知f(x)为偶函数,当时,则曲线y=f(x),在带你(1,-3)处的切线方程是_。(16)已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若,则_.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)
14、已知数列的前n项和,其中0(I)证明是等比数列,并求其通项公式(II)若 ,求(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。(19)(本小题满分12分)如图,四棱锥P-ABCD中,PA地面ABCD,ADBC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN平面PAB;(II)求直线AN与平面PMN所成角的正弦值.(20)
15、(本小题满分12分)已知抛物线C:的焦点为F,学科&网平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点.(I)若F在线段AB上,R是PQ的中点,证明ARFQ;(II)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程.(21)(本小题满分12分)设函数f(x)=acos2x+(a-1)(cosx+1),其中a0,记的最大值为A.()求f(x);()求A;()证明2A.请考生在22、23、24题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。22.(本小题满分10分)选修4-1:几何证明选讲如图,O中的中点为P,弦PC,
16、PD分别交AB于E,F两点.(I)若PFB=2PCD,求PCD的大小;(II)若EC的垂直平分线与FD的垂直平分线交于点G,证明OGCD.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为 .(I)写出的普通方程和的直角坐标方程;学.科网(II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数(I)当a=2时,求不等式的解集;(II)设函数当时,f(x)+g(x)3,求a的取值范围. 2016年普通高等学校招生全
17、国统一考试数学(理)(北京卷)本试卷共5页,150分考试时长120分钟考生务必将答案答在答题卡上,在试卷上作答无效考试结束后,将本试卷和答题卡一并交回第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项(1)已知集合A=B=,则 (A) (B)(C) (D)(2)若x,y满足 ,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1 (B)2(C)3 (D)4(4)设a,b是向量,则“IaI=IbI”是“Ia+bI=Ia-bI”的(A) 充分而不必要条件 (B)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 理科 数学 集合 汇编
限制150内