2022年最新南京航空航天大学Matrix-Theory双语矩阵论期末考试 .pdf
《2022年最新南京航空航天大学Matrix-Theory双语矩阵论期末考试 .pdf》由会员分享,可在线阅读,更多相关《2022年最新南京航空航天大学Matrix-Theory双语矩阵论期末考试 .pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档精品文档Part I (必做题,共5 题, 70 分) 第 1 题(15 分) 得分Let 1,1Pdenote the set of all real polynomials of degree less than 3 with domain (定义域) 1,1. The addition and scalar multiplication are defined in the usual way. Define an inner product on 1,1Pby 11,( ) ( )p qp t q t dt . (1) Construct an orthonormal basi
2、s for 1,1Pfrom the basis 21,x xby using the Gram-Schmidt orthogonalization process. (2) Let2( )1f xx1,1P. Find the projection of fonto the subspace spanned by1, x . Solution: (1)1111 , 12dx, 112u, 1111111,02222pxxdx, 12132xpuxxp, 22211331,22322pxxxx, 22232210(31)4xpuxxp- (2) 2211221,1,projxuuxuu2211
3、331,1,2222xxxx22120332- 第 2 题(15 分)得分Let be the linear transformation on 3P(the vector space of real polynomials of degree less than 3) defined by ( )( )( )p xxp xpx . (1) Find the matrix Arepresenting with respect to the ordered basis 21,x x for 3P . (2) Find a basis for 3Psuch that with respect to
4、 this basis, the matrix B representing is diagonal. (3) Find the kernel (核)and range (值域) of this transformation. Solution: 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 5 页 - - - - - - - - - 精品文档精品文档(1) 221022xxxx()( )()002010002A- (2) 101010001T(The column v
5、ectors of T are the eigenvectors of A) The corresponding eigenvectors in 3Pare 1000010002TAT(T diagonalizes A) 221, ,11, ,x xx xT. With respect to this new basis 21, ,1x x, the representing matrix of is diagonal. - (3) The kernel is the subspace consisting of all constant polynomials. The range is t
6、he subspace spanned by the vectors 2,1x x- 第 3 题(20 分)得分Let 110020012A. (1) Find all determinant divisors and elementary divisors ofA. (2) Find a Jordan canonical form of A. (3) Compute Ate. (Give the details of your computations.) Solution: (1) 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - -
7、 - 名师精心整理 - - - - - - - 第 2 页,共 5 页 - - - - - - - - - 精品文档精品文档110020012IA,(特征多项式2( )(1)(2)p. Eigenvalues are 1, 2, 2.) Determinant divisor of order 1( )1D, 2( )1D, 23( )( )(1)(2)DpElementary divisors are 2(1) and (2). - (2) The Jordan canonical form is 100021002J- (3) For eigenvalue 1, 010010011IA,
8、An eigenvector is 1(1,0,0)TpFor eigenvalue 2, 1102000010IA, An eigenvector is 2(0,0,1)TpSolve 32(2 )AI pp , 331100(2 )00000101AI ppwe obtain that 3(1, 1,0)Tp101001010P, 1110001010P1AtJePe P22210100110001000101000010tttteetee22220000tttttteeeetee- 第 4题 (10 分) 得分Suppose that 33RAand OIAA652. (1) What
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年最新南京航空航天大学Matrix-Theory双语矩阵论期末考试 2022 最新 南京航空航天 大学 Matrix Theory 双语 矩阵 期末考试
限制150内