altera原版文章:数字预矫正Digital Predistortion.ppt
《altera原版文章:数字预矫正Digital Predistortion.ppt》由会员分享,可在线阅读,更多相关《altera原版文章:数字预矫正Digital Predistortion.ppt(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、altera原版文章:数字原版文章:数字预矫正预矫正Digital Predistortion 2002AgendanIntroductionnAlgorithm- Standard lookup table method- Phase related errors- Memory effectnImplementation- Multipliers- Memory- Cordic- Processors 2002Introduction: Purpose nTechnology demonstrator- Show DPD can be done efficiently on PLD- Pr
2、ovide starting point for design- Show efficient implementation of key components- Provide FPGA benchmark for customer design 2002Introduction: PredistortionVRFVinVRFVinOverall LinearResponseVrf = kVinVRFVinPAVrf = kVinIdeal PAVdVPAPAVrf = fnlkVdReal PADPDVd = 1/fnlVinVdVinPredistorter 2002Algorithms
3、: OverviewnAdaptive Lookup Table (LUT)- Lookup table for phase and magnitude correction values- Deals with magnitude dependent errorsnVolterra modelling of PA- Direct implementation- Indirect LUT implementation 2002Algorithm: Distance Gradient MethodnAssumption: Error only depends on magnitude arcta
4、n(I/Q)LUT(r & )I & QDemodaddressr(I2 +Q2)1/2 arctan(I/Q)r(I2 +Q2)1/2delaydelayQr*cos()Ir*sin()I & QmodPAI,Q inI,Q out(-1)(-1) 2002Algorithm: Distance Gradient Method MATLAB simulation results using SALEH PA model EVM improved in region of 90% 2002Dist Gradient LUT Freq Plotsn Predistortion improves
5、ACLR by 70dB(considering 700-900 and 1100-1300 as side-band regions for measurements)n Simplified simulation environment(using SALEH PA model) 2002Algorithm: Phase related error0102030405060700.90.9511.051.11.15addr(magn)magnitude correction010203040506070-0.8-0.6-0.4-0.20LUT contentaddr(magn)phase
6、correctionnAdds dimension to lookup tablenIncreases memory, logic same size as beforenIncreases time to convergeLUT content, LUT content,Without phase error compensation With phase error compensation 2002Algorithm: Memory effectnModels effect of short term temperature increase on siliconnThree possi
7、ble approaches- Add “delta look-up table” (Intersil solution)- Add new dimension to LUT (fully adaptive)- Use FIR in magnitude address calculation 2002Algorithm: Memory effectnPA models:- Saleh 1lMemoryless, lErrors only dependent on input magnitude- Volterra based, lwith or without memory: 2,3lErro
8、r depend on input magnitude and phase1 A. Saleh and J.Salz, Adaptive Linearization of Power Amplifiers in Digital Radio Systems, Bell Syst. Tech. J., Vol.62, No. 4, pp 1019-1033, Apr. 19832 L.Ding, G.T.Zhou, D.R.Morgan, Z.Ma, J.S.Kenney, J.Kirn and C.R.Giardina, Memory polynomial predistorter based
9、on the indirect learning architecture, Proc.IEEE Global Telecommunications Conference, Taipei, Taiwan, Nov.20023. H. Qian, and G.T. Zhou, A neural network predistorter for nonlinear power amplifiers with memory, Proc. 10th IEEE DSP Workshop (DSP2002), Pine Mountain, GA, October 2002 2002Algorithm: M
10、emory effectnError mechanism: - Error depends on temperature- Temperature depends on previous magnitudesnNew PA model:- Altera modellError depends on current and previous magnitudes lError independent of input phasenSolution - FIR filter in address calculation 2002 arctan(I/Q)LUT(I & Q)I & Q Demodad
11、dressr(I2 +Q2)1/2 arctan(I/Q)r(I2 +Q2)1/2delayI = r*sin()Q = r*cos()I & QmodPAI,Q inI,Q out(-1)(-1)delayFIRProcessor + hardware accelerationPredistortion Reference DesignDSP BlocksSyncNCOFIR 2002DSP Block Architecture & Resources+Optional PipeliningOutput RegistersOutput MUX+ - S S+ - S SInput Regis
12、tersnHigh Performance DSP Operation-18x18 Functions at 282 MHznInput, Output & Pipelining registers-Reduce overall Logic usagenAdd/Accumulate/Subtract-Signed & unsigned operations-Dynamically change between Add & Subtractn Support complex multiplications- (Ar + jAi) x (Br + jBi) = (Ar Br AiBi) + j(A
13、i Br + ArBi)- 4 Multiplications, 1 Addition & 1 Subtraction - + 2002 arctan(I/Q)LUT(I & Q)I & Q Demodaddressr(I2 +Q2)1/2 arctan(I/Q)r(I2 +Q2)1/2delayI = r*sin()Q = r*cos()I & QmodPAI,Q inI,Q out(-1)(-1)delayFIRProcessor + hardware accelerationPredistortion Reference DesignDSP BlocksRAMSyncNCOFIR 200
14、2TriMatrix MemorynTodays applications need more high performance memorynOne size does not fit all nWide choice of modes and widthsM512 BlocksM4K BlocksM-RAMExternal Memory DevicesnDDR SDRAM & SRAMnSDR SDRAMnQDR & QDRII SRAMnZBT SRAMnDDR FCRAMnTrue Dual Port RAM nEmbedded Shift Register Moden512K bit
15、s nOperates Up to 300MhznTrue Dual Port RAM nEmbedded Shift Register ModenOperates Up to 312MhznRate ChangingnEmbedded Shift Register ModenOperates Up to 312MhzMore Bits For Larger Memory BufferingMore Data Ports for Greater Memory Bandwidth 2002 arctan(I/Q)LUT(I & Q)I & Q Demodaddressr(I2 +Q2)1/2 a
16、rctan(I/Q)r(I2 +Q2)1/2delayI = r*sin()Q = r*cos()I & QmodPAI,Q inI,Q out(-1)(-1)delayFIRProcessor + hardware accelerationPredistortion Reference DesignDSP BlocksRAMCORDICSyncNCOFIR 2002CORDICnHardware efficient algorithm for computing functions such as:- Trigonometric- Hyperbolic- LogarithmicnIterat
17、ive solution that uses only shifts and adding/subtracting- High performance as no multiplications and divisions- Simple/less hardware required 2002Altera CORDIC solution for DPDCORDICX_inY_inZ_inmodeX_outY_outZ_out Cartesian to Polar conversion X_in, Y_in = Cartesian values, Z_in=0, mode = 0 X_out =
18、 magnitude, Z_out = phase Polar to Cartesian conversionX_in = magnitude, Z_in=phase, Y_in=0, mode = 1X_out, Y_out = Cartesian values Mode selects conversion direction Pipelined enabling new inputs to be applied in every clk cycle After initial latency valid outputs will appear on every clk cycle Tim
19、esharing : on each clk cycle the mode of the CORDIC can be changed 2002CORDIC ArchitectureQuadrant detect & IP modifyAdd/Sub &ShiftRegQuadrant AdjustIteration 1Iteration n Parallel Architecture enabling high performance CORDIC algorithm can only deal with vector rotations of 90 to +90 degrees Requir
20、e additional logic (Quadrant blocks) to be able to deal with vectors in any of the four quadrants Parameterisable code input vector widths and number of iterations can be changed. 2002CORDIC ImplementationnLEs in Altera PLDs- Each LE is suited for implementing the required adders/subtractors.- LEs c
21、an dynamically change from operating as an adder to subtractor- Each LE contains a register nPerformanceVector WidthsIterationsFmaxLEs requiredAbs no. % of total in 1S101616219MHz130012%3232189MHz460043% 2002 arctan(I/Q)LUT(I & Q)I & Q Demodaddressr(I2 +Q2)1/2 arctan(I/Q)r(I2 +Q2)1/2delayI = r*sin()
22、Q = r*cos()I & QmodPAI,Q inI,Q out(-1)(-1)delayFIRProcessor + hardware accelerationPredistortion Reference DesignDSP BlocksRAMCORDICSyncNCOFIR 2002Implementation: Processor?nShould we use processor?- ForlFlexibilitylEasy to add custom interpolation or similarlLow data rate in feedback path at base b
23、and- AgainstlStraightforward data path (few “IF” branches)lToo slow at IFlNo clear size advantagelDifficult to exploit deeply pipelined CORDIC 2002Performance (Dhrystone MIPS 2.1)20501002000Soft CoreHard Core Soft Core Advantages Flexibility Low Cost Portable Design Scalability Obsolescence Proof Fi
24、ts Broad Range of Altera PLD Families Hard Core Advantages High Performance 922TDMI Time-to-Market Lots of On-Chip Memory Leverage Large Existing Code BaseExcalibur Embedded Processor Cores 2002ImplementationnForward path: I,Q multipliersnLookup table: Dual port memorynFeedback path- Nios with custo
25、m instructions- CORDIC acceleration- Multiply acceleration 2002Target devicesnStratix - - Contains DSP Blocks- TriMatrix RAM allows for Large lookup tables (multiple dimensions)- Suitable if up/down converters are also integratednCyclone - - Extensive use of CORDIC- Lowest cost 2002Ref Design Resour
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- altera原版文章:数字预矫正Digital Predistortion altera 原版 文章 数字 矫正 Digital
限制150内