131单调性与最大(小)值教学课件(1).ppt
《131单调性与最大(小)值教学课件(1).ppt》由会员分享,可在线阅读,更多相关《131单调性与最大(小)值教学课件(1).ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一课时:单调性观察下列函数图象,体会它们的特点: 在上面的六幅函数图象中,有的图象由左至右是上升的;有的图象是下降的;还有的图象有的部分是下降的,有的部分是上升的. 函数图象的“上升”“下降”反映了函数的一个基本性质单调性.如何描述函数图象的“上升”“下降”呢?以二次函数f(x)=x2 为例,列出x,y的对应值表:x -4 -3 -2 -1 01234f(x)=x2 16 9410149 16 对比左图和上表,可以发现什么规律?图象在y轴左侧“下降”,也就是,在区间(-,0上随着x的增大增大,相应的f(x)反而随着减小减小;图象在y轴右侧“上升”,也就是,在区间(0,+)上随着x的增大增大,
2、相应的f(x)也随着增大增大.练习:利用刚才的方法描述一下左侧四个函数图象的“上升”“下降”的情况.思考如何利用函数解析式f(x)=x2描述“随着x的增大,相应的f(x)反而随着减小.”“随着x的增大,相应的f(x)也随着增大.”?有同学认为可以这样描述:在区间(0,+)上, x1x2时,有f(x1)f(x2).他并且画出了如下示意图,你认为他的说法对吗?对于二次函数f(x)=x2 ,我们可以这样来描述“在区间(0,+) 上随着x的增大,相应的f(x)也随着增大.”:试一试:你能仿照这样的描述,说明函数f(x)=x2在区间(-,0上是减函数吗?定义:如果对于定义域I内的某个区间D上的任意两个自
3、变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数增函数(increasing function).如果对于定义域I内的某个区间D上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是减函数减函数(decreasing function).注意比较这两句话的不同之处和共同之处.想一想为了说明一个函数在某个区间上是增函数还是减函数,我们应该重点说明哪些要素?自我检测1函数yf(x)在区间(a,b)上是减函数,x1,x2(a,b),且x1x2,则有() Af(x1)f(x2) Bf(x1)f(x2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 131 调性 最大 教学 课件
限制150内