《2022年大学物理公式大全.. .pdf》由会员分享,可在线阅读,更多相关《2022年大学物理公式大全.. .pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章质点运动学和牛顿运动定律1.1 平均速度v=tr1.2 瞬时速度 v=lim0ttr=dtdr1.3 速度 v=dtdslimlim0t0ttr1.6 平均加速度a=tv1.7 瞬时加速度(加速度)a=lim0ttv=dtdv1.8 瞬时加速度a=dtdv=22dtrd1.11 匀速直线运动质点坐标x=x0+vt 1.12 变速运动速度 v=v0+at 1.13 变速运动质点坐标x=x0+v0t+21at21.14 速度随坐标变化公式:v2-v02=2a(x-x0) 1.15 自由落体运动 1.16竖直上抛运动gyvatygtv22122gyvvgttvygtvv2212022001.1
2、7 抛体运动速度分量gtavvavvyxsincos001.18 抛体运动距离分量20021sincosgttavytavx1.19 射程 X=gav2sin201.20 射高 Y=gav22sin201.21 飞行时间y=xtga ggx21.22 轨迹方程y=xtga avgx2202cos21.23 向心加速度 a=Rv21.24圆周运动加速度等于切向加速度与法向加速度矢量和 a=at+an 1.25 加速度数值 a=22ntaa1.26 法向加速度和匀速圆周运动的向心加速度相同an=Rv21.27 切向加速度只改变速度的大小at=dtdv1.28 RdtdRdtdsv1.29 角速度d
3、td1.30 角加速度22dtdtdd1.31 角加速度a 与线加速度an、at间的关系an=222)(RRRRv at=RdtdRdtdv牛顿第一定律: 任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。牛顿第二定律: 物体受到外力作用时,所获得的加速度 a 的大小与外力F的大小成正比, 与物体的质量m成反比;加速度的方向与外力的方向相同。1.37F=ma 牛顿第三定律:若物体A 以力 F1作用与物体B,则同时物体 B必以力 F2作用与物体A;这两个力的大小相等、方向相反,而且沿同一直线。万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比
4、,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线1.39 F=G221rmm G为 万 有 引 力 称 量 =6.67 10-11Nm2/kg21.40 重力 P=mg (g重力加速度 ) 1.41 重力 P=G2rMm1.42有上两式重力加速度g=G2rM( 物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变) 1.43 胡克定律 F=kx (k是比例常数,称为弹簧的劲度系数 ) 1.44 最大静摩擦力 f最大 =0N (0静摩擦系数)名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - -
5、- - - - - 第 1 页,共 12 页 - - - - - - - - - 1.45 滑动摩擦系数 f= N ( 滑动摩擦系数略小于0) 第二章守恒定律2.1 动量 P=mv 2.2 牛顿第二定律F=dtdPdtmvd)(2.3 动量定理的 微分形式Fdt=mdv=d(mv) F=ma=mdtdv2.4 21ttFdt21)(vvmvdmv2mv12.5 冲量 I= 21ttFdt2.6 动量定理I=P2P12.7 平均冲力F与冲量I= 21ttFdt=F(t2-t1) 2.9 平均冲力F12ttI1221ttFdttt1212ttmvmv2.12 质 点 系 的 动 量 定 理(F1+
6、F2) t=(m1v1+m2v2) (m1v10+m2v20) 左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量2.13 质点系的动量定理:niniiiniiiivmvmtF1101作用在系统上的外力的总冲量等于系统总动量的增量2.14 质点系的动量守恒定律(系统不受外力或外力矢量和为零)niiivm1=niiivm10=常矢量2.16 mvRRpL圆周运动角动量R 为半径2.17 mvddpL非圆周运动, d 为参考点o 到 p点的垂直距离2.18 sinmvrL同上2.21 sinFrFdMF 对参考点的力矩2.22 FrM力矩2.24 dtdLM作用在质点上的合外力矩等于质
7、点角动量的时间变化率2.26 常矢量LdtdL0如果对于某一固定参考点,质点(系)所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变。质点系的角动量守恒定律2.28 iiirmI2刚体对给定转轴的转动惯量2.29 IM(刚体的合外力矩)刚体在外力矩M 的作用下所获得的角加速度a 与外合力矩的大小成正比,并于转动惯量I 成反比;这就是刚体的定轴转动定律。2.30 vmdvrdmrI22转动惯量(dv 为相应质元dm 的体积元, p 为体积元 dv 处的密度)2.31 IL角动量2.32 dtdLIaM物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量2.33 dLMdt冲量距
8、2.34 0000IILLdLMdtLLtt2.35 常量IL2.36 cosFrW2.37 rFW力的功等于力沿质点位移方向的分量与质点位移大小的乘积2.38 dsFdrFdWWbLabLabLaabcos)()()(2.39 nbLabLaWWWdrFFFdrFW2121)()()(合力的功等于各分力功的代数和2.40 tWN功率等于功比上时间2.41 dtdWtWNt0lim2.42 vFvFtsFNtcoscoslim0瞬 时 功 率等于力 F 与质点瞬时速度v 的标乘积2.43 20221210mvmvmvdvWvv功等于动能的增量2.44 221mvEk物体的动能2.45 0kkE
9、EW合力对物体所作的功等于物体动能的增量(动能定理)2.46 )(baabhhmgW重力做的功2.47 )()(babaabrGMmrGMmdrFW万有引力做的功2.48 222121babaabkxkxdrFW弹性力做的功名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 12 页 - - - - - - - - - 2.49 pppEEEWbaab保势能定义2.50 mghEp重力的势能表达式2.51 rGMmEp万有引力势能2.52 221kxEp弹性势能表达式2.53
10、 0kkEEWW内外质点系动能的增量等于所有外力的功和内力的功的代数和(质点系的动能定理)2.54 0kkEEWWW非内保内外保守内力和不保守内力2.55 pppEEEW0保内系统中的保守内力的功等于系统势能的减少量2.56 )()(00pkpkEEEEWW非内外2.57 pkEEE系统的动能k 和势能 p 之和称为系统的机械能2.58 0EEWW非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理)2.59 常量时,有、当非内外pkEEEWW00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中
11、系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。2.60 02022121mghmvmghmv重力作用下机械能守恒的一个特例2.61 20202221212121kxmvkxmv弹性力作用下的机械能守恒第三章气体动理论1 毫米汞柱等于133.3Pa 1mmHg=133.3Pa 1 标准大气压等户760 毫米汞柱1atm=760mmHg=1.013 105Pa 热力学温度 T=273.15+t 3.2 气体定律222111TVPTVP常量 即TVP=常量阿付伽德罗定律:在相同的温度和压强下,1 摩尔的任何气体所占据的体积都相同。在标准状态下,即压强P0=1atm、
12、温度T0=273.15K 时, 1 摩尔的任何气体体积均为 v0=22.41 L/mol 3.3 罗常量 Na=6.022 mol-1 3.5普适气体常量R000TvP国际单位制为:8.314 J/(mol.K) 压强用大气压,体积用升8.206 10-2 atm.L/(mol.K) 3.7 理想气体的状态方程: PV=RTMMmol v=molMM(质量为M ,摩尔质量为Mmol的气体中包含的摩尔数)(R为与气体无关的普适常量,称为普适气体常量) 3.8理想气体压强公式 P=231vmn(n=VN为单位体积中的平均分字数,称为分子数密度;m为每个分子的质量, v 为分子热运动的速率) 3.9
13、 P=VNnnkTTNRVNmVNNmRTVMMRTAAmol(为气体分子密度, R和 NA都是普适常量, 二者之比称为 波尔兹常量 k=KJNRA/1038.1233.12 气体动理论温度公式:平均动能kTt23( 平均动能只与温度有关) 完全确定一个物体在一个空间的位置所需的独立坐标数目, 称为这个物体运动的自由度。双原子分子共有五个自由度,其中三个是平动自由度,两个适转动自由度,三原子或多原子分子,共有六个自由度)分子自由度数越大,其热运动平均动能越大。每个具有相同的品均动能kT213.13 kTit2 i为自由度数, 上面 3/2 为一个原子分子自由度3.14 1摩尔理想气体的内能为:
14、E0=RTikTNNAA2213.15质量为M ,摩尔质量为Mmol的理想气体能能为名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 12 页 - - - - - - - - - E=RTiMMEMMEmolmol200气体分子热运动速率的三种统计平均值3.20最概然速率( 就是与速率分布曲线的极大值所对应哦速率,物理意义:速率在p附近的单位速率间隔内的分子数百分比最大)mkTmkTp41.12(温度越高,p越大,分子质量m 越大p)3.21 因为 k=ANR和 mNA=M
15、mol 所以上式可表示为molmolApMRTMRTmNRTmkT41.12223.22 平均速率molmolMRTMRTmkTv60.1883.23 方均根速率molmolMRTMRTv73.132三种速率, 方均根速率最大,平均速率次之, 最概速率最小; 在讨论速率分布时用最概然速率,计算分子运动通过的平均距离时用平均速率,计算分子的平均平动动能时用分均根第四章热力学基础热力学第一定律: 热力学系统从平衡状态1 向状态 2的变化中,外界对系统所做的功W和外界传给系统的热量Q 二者之和是恒定的,等于系统内能的改变E2-E1 4.1 W+Q= E2-E14.2 Q= E2-E1+W 注意这里为
16、W同一过程中系统对外界所做的功( Q0系统从外界吸收热量;Q0系统对外界做正功;W0系统对外界做负功)4.3 dQ=dE+dW(系统从外界吸收微小热量dQ ,内能增加微小两 dE,对外界做微量功dW 4.4 平衡过程功的计算dW=PSdl=PdV4.5 W=21VVPdV4.6平衡过程中热量的计算 Q=)(12TTCMMmol(C 为摩尔 热 容量,1 摩尔 物 质温 度 改变1 度所 吸 收或 放 出的热量 ) 4.7 等压过程:)(12TTCMMQpmolp定压摩尔热容量4.8等容过程:)(12TTCMMQvmolv定容摩尔热容量4.9内能增量E2-E1=)(212TTRiMMmoliMM
17、dEmol24.11 等容过程2211TPTPVRMMTPmol或常量4.12 4.13 Qv=E2-E1= )(12TTCMMvmol等容过程系统不对外 界 做功;等容过 程 内能变化4.14 等压过程2211TVTVPRMMTVmol或常量4.15 )()(121221TTRMMVVPPdVWVVmol名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 12 页 - - - - - - - - - 4.16 WEEQP12( 等压膨胀过程中,系统从外界吸收的热量中只有一部
18、分用于增加系统的内能,其余部分对于外部功)4.17 RCCvp(1 摩尔理想气体在等压过程温度升高 1 度时比在等容过程中要多吸收8.31焦耳的热量,用来转化为体积膨胀时对外所做的功,由此可见, 普适气体常量 R的物理意义: 1 摩尔理想气体在等压过程中升温1 度对外界所做的功。 )4.18 泊松比vpCC4.19 4.20 RiCRiCpv2224.21 iiCCvp24.22等温变化2211VPVPRTMMPVmol或常量4.23 4.24 121211lnlnVVRTMMWVVVPWmol或4.25等温过程热容量计算:12lnVVRTMMWQmolT(全部转化为功)4.26绝热过程三个参
19、数都变化2211VPVPPV或常量绝热过程的能量转换关系4.27 12111)(11rVVVPW4.28 )(12TTCMMWvmol根据已知量求绝热过程的功4.29 W循环=21QQ Q2 为热机循环中放给外界的热量4.30 热机循环效率1QW循环(Q1一个循环从高温热库吸收的热量有多少转化为有用的功)4.31 121211QQQQQ 1 (不可能把所有的热量都转化为功)4.33 制冷系数2122QQQWQ循环 ( Q2 为从低温热库中吸收的热量) 第五章静电场5.1 库仑定律 :真空中两个静止的点电荷之间相互作用的静电力F 的大小与它们的带电量q1、q2的乘积成正比, 与它们之间的距离r
20、的二次方成反比, 作用力的方向沿着两个点电荷的连线。221041rqqF基元电荷:e=1.602C1910;0真空电容率=8.851210; 041=8.999105.2 rrqqF?412210库仑定律的适量形式5.3 场强0qFE5.4 rrQqFE3004 r为位矢5.5 电场强度叠加原理(矢量和)5.6 电偶极子(大小相等电荷相反)场强E3041rP电偶极距P=ql 5.7 电荷连续分布的任意带电体rrdqdEE?4120均匀带点细直棒5.8 cos4cos20ldxdEdEx5.9 sin4sin20ldxdEdEy名师资料总结 - - -精品资料欢迎下载 - - - - - - -
21、 - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 12 页 - - - - - - - - - 5.10jsosaiarE)(cos)sin(sin405.11 无限长直棒jrE025.12 dSdEE在电场中任一点附近穿过场强方向的单位面积的电场线数5.13 电通量cosEdSEdSdE5.14 dSEdE5.15 sEEdSEd5.16 sEdSE封闭曲面高斯定理: 在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的电荷的电量的代数和的015.17 SqdSE01若 连 续 分 布 在 带 电 体 上=Qdq015.19
22、 )?4120RrrrQE(均匀带点球就像电荷都集中在球心5.20 E=0 (rR) 均匀带点球壳内部场强处处为零5.21 02E无限大均匀带点平面(场强大小与到带点平面的距离无关,垂直向外 (正电荷)5.22)11(400baabrrQqA电场力所作的功5.23 LdlE0静电场力沿闭合路径所做的功为零(静电场场强的环流恒等于零)5.24 电势差babaabdlEUUU5.25 电势无限远aadlEU注意电势零点5.26 )(baababUUqUqA电场力所做的功5.27 rrQU?40带点量为Q的点电荷的电场中的电势分布,很多电荷时代数叠加, 注意为 r 5.28 niiiarqU104电
23、势的叠加原理5.29 QardqU04电荷连续分布的带电体的电势5.30 rrPU?430电偶极子电势分布,r为位矢,P=ql 5.31 21220)(4xRQU半径为 R 的均匀带电Q圆环轴线上各点的电势分布5.36 W=qU 一个电荷静电势能,电量与电势的乘积5.37 EE00或静电场中导体表面场强5.38 UqC孤立导体的电容5.39 U=RQ04孤立导体球5.40 RC04孤立导体的电容5.41 21UUqC两个极板的电容器电容5.42 dSUUqC021平行板电容器电容5.43 )ln(2120RRLUQC圆柱形电容器电容R2 是大的5.44 rUU电介质对电场的影响5.45 00U
24、UCCr相对 电容率5.46 dSdCCrr00= 0r叫这种电介质的电容率(介电系数) (充满电解质后,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 12 页 - - - - - - - - - 电容器的电容增大为真空时电容的r倍。 ) (平行板电容器)5.47 rEE0在平行板电容器的两极板间充满各项同性均匀电解质后,两板间的电势差和场强都减小到板间为真空时的r15.49 E=E0+E/电解质内的电场(省去几个)5.60 2033rRDEr半径为 R的均匀带点球放在
25、相对电容率r的油中,球外电场分布5.61 2221212CUQUCQW电容器储能第六章稳恒电流的磁场6.1 dtdqI电流强度(单位时间内通过导体任一横截面的电量)6.2 jdSdIj?垂直电流密度(安/ 米2)6.4 SSdSjjdIcos电流强度等于通过S的电流密度的通量6.5 dtdqdSjS电流的连续性方程6.6 SdSj=0 电流密度j 不与与时间无关称稳恒电流,电场称稳恒电场。6.7 dlEK电源的电动势(自负极经电源内部到正极的方向为电动势的正方向)6.8 LKdlE电动势的大小等于单位正电荷绕闭合回路移动一周时非静电力所做的功。在电源外部 Ek=0 时, 6.8 就成 6.7
26、了6.9 qvFBmax磁感应强度大小毕奥 -萨伐尔定律:电流元Idl在空间某点P产生的磁感应轻度 dB 的大小与电流元Idl的大小成正比,与电流元和电流元到P电的位矢 r之间的夹角的正弦成正比, 与电流元到P点的距离r 的二次方成反比。6.10 20sin4rIdldB40为 比 例 系 数 ,AmT70104为真空磁导率6.14 )cos(4sin421020conRIrIdlB载流直导线的磁场 (R为点到导线的垂直距离)6.15 RIB40点恰好在导线的一端且导线很长的情况6.16 RIB20导线很长,点正好在导线的中部6.17 232220)(2 RIRB圆形载流线圈轴线上的磁场分布6
27、.18 RIB20在圆形载流线圈的圆心处,即x=0 时磁场分布6.20 302 xISB在很远处时平面载流线圈的磁场也常用磁矩Pm, 定义为线圈中的电流I 与线圈所包围的面积的乘积。磁矩的方向与线圈的平面的法线方向相同。6.21 ISnPm n 表示法线正方向的单位矢量。6.22 NISnPm线圈有 N 匝6.23 3024xPBm圆形与非圆形平面载流线圈的磁场(离线圈较远时才适用)6.24 RIB40扇 形 导 线 圆 心 处 的 磁 场 强 度RL为圆弧所对的圆心角(弧度)6.25 nqvSQIt运动电荷的电流强度6.26 20?4rrqvB运动电荷单个电荷在距离r 处产生的磁场名师资料总
28、结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 12 页 - - - - - - - - - 6.26 dSBdsBdcos磁感应强度,简称磁通量(单位韦伯Wb)6.27 SmdSB通过任一曲面S 的总磁通量6.28 SdSB0通过闭合曲面的总磁通量等于零6.29 IdlBL0磁感应强度B 沿任意闭合路径L的积分6.30 LIdlB内0在稳恒电流的磁场中,磁感应强度沿任意闭合路径的环路积分,等于这个闭合路径所包围的电流的代数和与真空磁导率0的乘积(安培环路定理或磁场环路定理)6.3
29、1 IlNnIB00螺线管内的磁场6.32 rIB20无限长载流直圆柱面的磁场(长直圆柱面外磁场分布与整个柱面电流集中到中心轴线同)6.33 rNIB20环形导管上绕N 匝的线圈(大圈与小圈之间有磁场,之外之内没有)6.34 sinBIdldF安培定律:放在磁场中某点处的电流元 Idl,将受到磁场力dF,当电流元Idl与所在处的磁感应强度B 成任意角度时,作用力的大小为:6.35 BIdldFB 是电流元 Idl 所在处的磁感应强度。6.36 LBIdlF6.37 sinIBLF方向垂直与导线和磁场方向组成的平面,右手螺旋确定6.38 aIIf22102平行无限长直载流导线间的相互作用,电流方
30、向相同作用力为引力,大小相等,方向相反作用力相斥。a 为两导线之间的距离。6.39 aIf220III21时的情况6.40 sinsinBPISBMm平面载流线圈力矩6.41 BPMm力矩:如果有N 匝时就乘以N 642 sinqvBF(离子受磁场力的大小)(垂直与速度方向,只改变方向不改变速度大小)6.43 BqvF(F 的方向即垂直于v 又垂直于B,当 q 为正时的情况)6.44 )(BvEqF洛伦兹力, 空间既有电场又有磁场6.44 BmqvqBmvR)(带点离子速度与B 垂直的情况做匀速圆周运动6.45 qBmvRT22周期6.46 qBmvRsin带点离子v 与 B 成角时的情况。做
31、螺旋线运动6.47 qBmvhcos2螺距6.48 dBIRUHH霍尔效应。导体板放在磁场中通入电流在导体板两侧会产生电势差6.49 vBlUHl 为导体板的宽度6.50 dBInqUH1霍尔系数nqRH1由此得到6.48公式6.51 0BBr相对磁导率 (加入磁介质后磁场会发生改变)大于 1 顺磁质小于1 抗磁质远大于1铁磁质6.52 0BBB说明顺磁质使磁场加强6.54 0BBB抗磁质使原磁场减弱6.55 )(0SLINIdlB有磁介质时的安培环路定理 IS为介质表面的电流6.56 NIINISr0称为磁介质的磁导率6.57 内IdlBL名师资料总结 - - -精品资料欢迎下载 - - -
32、 - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 12 页 - - - - - - - - - 6.58 HBH 成为磁场强度矢量6.59 LIdlH内磁场强度矢量H 沿任一闭合路径的线积分, 等于该闭合路径所包围的传导电流的代数和, 与磁化电流及闭合路径之外的传导电流无关 (有磁介质时的安培环路定理)6.60 nIH无限长直螺线管磁场强度6.61 nInIHBr0无限长直螺线管管内磁感应强度大小第七章电磁感应与电磁场电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,回路中就产生感应电动势。楞次定律: 闭合回路中感应电流的
33、方向,总是使得由它所激发的磁场来阻碍感应电流的磁通量的变化任一给定回路的感应电动势的大小与穿过回路所围面积的磁通量的变化率dtdm成正比7.1 dtd7.2 dtd7.3 dtdNdtd叫做全磁通,又称磁通匝链数,简称磁链表示穿过过各匝线圈磁通量的总和7.4 BlvdtdxBldtd动生电动势7.5 BvefEmk作用于导体内部自由电子上的磁场力就是提供动生电动势的非静电力,可用洛伦兹除以电子电荷7.6 _)(dlBvdlEk7.7 BlvdlBvba)(导体棒产生的动生电动势7.8 sinBlv导体棒 v 与 B 成一任一角度时的情况7.9 dlBv)(磁场中运动的导体产生动生电动势的普遍公
34、式7.10 IBlvIP感应电动势的功率7.11 tNBSsin交流发电机线圈的动生电动势7.12 NBSm当tsin=1时, 电动势有最大值m所以 7.11 可为tmsin7.14 sdSdtdB感生电动势7.15 LEdl感感生电动势与静电场的区别在于一是感生电场不是由电荷激发的,而是由变化的磁场所激发;二是描述感生电场的电场线是闭合的,因而它不是保守场,场强的环流不等于零,而静电场的电场线是不闭合的,他是保守场,场强的环流恒等于零。7.18 1212IMM21称为回路C1对 C2 额互感系数。由I1 产生的通过C2 所围面积的全磁通7.19 2121IM7.20 MMM21回路周围的磁介
35、质是非铁磁性的,则互感系数与电流无关则相等7.21 1221IIM两个回路间的互感系数(互感系数在数值上等于一个回路中的电流为1安时在另一个回路中的全磁通)7.22 dtdIM12dtdIM21互感电动势7.23 dtdIdtdIM2112互感系数7.24 LI比例系数 L 为自感系数,简称自感又称电感7.25 IL自感系数在数值上等于线圈中的电流为1A时通过自身的全磁通7.26 dtdIL线圈中电流变化时线圈产生的自感电动势7.27 dtdIL7.28 VnL20螺线管的自感系数与他的体积V 和单位长度匝数的二次方成正比7.29 221LIWm具有自感系数为L 的线圈有电流I 时所储存的磁能
36、名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 12 页 - - - - - - - - - 7.30 VnL2螺线管内充满相对磁导率为r的磁介质的情况下螺线管的自感系数7.31 nIB螺线管内充满相对磁导率为r的磁介质的情况下螺线管内的磁感应强度7.32 221Hwm螺线管内单位体积磁场的能量即磁能密度7.33 VmBHdVW21磁场内任一体积V 中的总磁场能量7.34 rNIH2环状铁芯线圈内的磁场强度7.35 22 RIrH圆柱形导体内任一点的磁场强度第八章机械振动
37、8.1 022kxdtxdm弹簧振子简谐振动8.2 2mkk 为弹簧的劲度系数8.3 0222xdtxd弹簧振子运动方程8.4 )cos( tAx弹簧振子运动方程8.5 )sin(tAx28.6 )sin(tAdtdxu简谐振动的速度8.7 xa2简谐振动的加速度8.8 2T2T简谐振动的周期8.9 T1简谐振动的频率8.10 2简谐振动的角频率(弧度/秒)8.11 cos0Ax当 t=0 时8.12 sin0Au8.13 22020uxA振幅8.14 00 xutg00 xua r c t g初相8.15 )(sin21212222tmAmuEk弹簧的动能8.16 )cos(2121222t
38、kAkxEp弹 簧的 弹性势能8.17 222121kxmuE振动系的总机械能8.18 2222121kAAmE总机械能守恒8.19 )cos( tAx同方向同频率简谐振动合成,和移动位移8.20 )cos(212212221AAAAA和振幅8.21 22112211coscossinsinAAAAtg第九章机械波91 Tv波速 v 等于频率和波长的乘积9.3 介质的杨氏弹介质的切变弹性模量纵波横波NYvNv(固体)9.4 Bv纵波B 为介质的荣变弹性模量(在液体或气体中传播)9.5 )(cosxtAy简谐波运动方程9.6 )(2cos)(2cos)(2cosxvtAxTtAxvtAyv速度等
39、于频率乘以波长(简谐波运动方程的几种表达方式)9.7 )(2)(1212xxvv或简 谐 波波形曲线P2 与 P1 之间的相位差负号表示p2 落后9.8 )(2cos)(2cos)(cosxTtAxvtAvxtAy沿负向传播的简谐波的方程9.9 )(sin21222vxtVAEk波质点的动能9.10 )(sin)(21222vxtAVEP波质点的势能名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 12 页 - - - - - - - - - 9.11 )(sin2122
40、2vxtVAEEpk波传播过程中质元的动能和势能相等9.12 )(sin222vxtVAEEEpk质元总机械能9.13 )(sin222vxtAVE波的能量密度9.14 2221A波在一个时间周期内的平均能量密度9.15 vS平均能流9.16 2221vAvI能流密度或波的强度9.17 0logIIL声强级9.18 )cos(21tAyyy波的干涉9.20 ,2, 1 , 02)(2)(1212kkrr波 的 叠 加(两振动在P点的相位差为派的偶数倍时和振幅最大)9.21 ,3 ,2, 1 ,0)12()(2)(1212kkrr波的叠加两振动在P 点的相位差为派的偶数倍时和振幅最小9.22 ,
41、2, 1 ,0,2221kkrr两个波源的初相位相同时的情况9.23 ,2, 1 ,0,2)12(21kkrr第十章电磁震荡与电磁波10.1 0122qLCdtqd无阻尼自由震荡 (有电容 C 和电感L 组成的电路)10.2 )cos(0tQq10.3 )sin(0tII10.4 LC1LCT2LC121震荡的圆频率(角频率) 、周期、频率10.6 00BE电磁波的基本性质(电矢量E,磁矢量 B)10.7 BE1和磁导率分别为介质中的电容率和10.8 )(212BEWWWme电磁场的总能量密度10.10 EBvWS1电 磁 波 的 能 流 密 度1v第十一章波动光学11.1 12rr杨氏双缝干
42、涉中有S1,S2发出的光到达观察点 P 点的波程差11.2 2221)2(DdxrD 为双缝到观测屏的距离,d为两缝之间的距离,r1,r2 为 S1,S2 到 P的距离2222)2(Ddxr11.3 Ddx使屏足够远,满足D 远大于 d 和远大于x 的情况的波程差11.4 Ddx2相位差11.5 )2, 1,0(kdDkx各明条文位置距离O 点的距离(屏上中心节点)11.6 )2, 1,0(2)12(kdDkx各暗条文距离O 点的距离11.7 dDx两相邻明条纹或暗条纹间的距离11.8 明条纹)2,1 ,0(222kkh劈尖波程差暗条纹)2, 1 ,0(2)12(22kkh11.9 2sinl
43、两条明(暗)条纹之间的距离l 相等11.10 Rkrk牛顿环第k 几暗环半径( R 为透镜曲率半径)11.11 2Nd迈克尔孙干涉仪可以测定波长或者名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 12 页 - - - - - - - - - 长度( N 为条纹数, d 为长度)11.12 时为暗纹中心)3,2, 1(22sinkka单缝的夫琅乔衍射为衍射角, a 为缝宽11.13 时为明纹中心)(3 ,2, 1(22sinkka11.14 asin半角宽度11.15 a
44、fftgx22单缝的夫琅乔衍射中央明纹在屏上的线宽度11.16 Dm22.1如果双星衍射斑中心的角距离m恰好等于艾里斑的角半径即11.16 此时,艾里斑虽稍有重叠,根据瑞利准则认为此时双星恰好能被分辨,m成为最小分辨角,其倒数11.17 11.17 22.11DmR叫做望远镜的分辨率或分辨本领(与波长成反比,与透镜的直径成正比)11.18 )3 ,2, 1 , 0(sinkkd光栅公式(满足式中情况时相邻两缝进而所有缝发出的光线在透镜焦平面上p点会聚时将都同相,因而干涉加强形成明条纹11.19 aII20cos强度为 I0 的偏振光通过检偏器后强度变为第十二章狭义相对论基础12.25 2)(1
45、cvll狭义相对论长度变换12.26 2)(1cvtt狭义相对论时间变换12.27 21cvuvuuxxx狭义相对论速度变换12.28 20)(1cvmm物体相对观察惯性系有速度v时的质量12.30 dmcdEk2动能增量12.31 202cmmcEk动能的相对论表达式12.32 200cmE2mcE物体的静止能量和运动时的能量(爱因斯坦纸能关系式)12.33 420222cmpcE相对论中动量和能量的关系式p=E/c 第十三章波和粒子13.1 2021mmveVV0为遏制电压, e 为电子的电量, m为电子质量,vm为电子最大初速13.2 AhvmveVm2021h 是一个与金属无关的常数,A 是一个随金属种类而不同的定值叫逸出功。遏制电压与入射光的强度无关,与入射光的频率v 成线性关系13.3 Amvhvm221爱因斯坦方程13.4 22chvcm光光子的质量13.5 hchvcmp光光子的动量名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 12 页 - - - - - - - - -
限制150内