2022年2022年各种矩阵三角矩阵正定矩阵正交矩阵伴随矩阵 .pdf
《2022年2022年各种矩阵三角矩阵正定矩阵正交矩阵伴随矩阵 .pdf》由会员分享,可在线阅读,更多相关《2022年2022年各种矩阵三角矩阵正定矩阵正交矩阵伴随矩阵 .pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三对角矩阵在线性代数 中,一个三对角矩阵是 矩阵的一种,它“几乎”是一个 对角矩阵 。准确来说:一个三对角矩阵的 非零系数 在主对角线 上,或比主对角线低一行的对角线上,或比主对角线高一行的对角线上。例如,下面的是三对角矩阵:性质三对角矩阵是海森堡矩阵。尽管一般的三对角矩阵不一定是对称或埃尔米特矩阵,许多解线性代数问题时出现的矩阵却往往有这些性质。进一步如果一个实三对角矩阵A 满足ak,k+1 ak+1,k 0,所以它元素的符号都为正,从而相似于一个埃尔米特矩阵,这样特征值都是实数。后一个推论如果我们将条件ak,k+1 ak+1,k 0 换为 ak,k+1 ak+1,k 0 ,结论仍然成立。所
2、有 n 3n 三对角矩阵的 集合组成一个3n-2 维向量空间 。许多线性代数 算法 应用于对角矩阵时所需 计算量 特别少,这种改进也经常被三对角矩阵继承。譬如,一个 n 阶三对角矩阵A 的行列式 能用 continuant (Continuant )的递归 公式计算:这里是第 k 个主子式,即是由 A 最开始的k 行 k 列组成的子矩阵。用此方法计算三对角矩阵所需计算量是线性n ,然而对于一般的矩阵复杂度是 n 的 3 次方。计算程序一个将一般矩阵变成海森堡型的变换,将厄密特矩阵变成三对角矩阵。从而,许多特征值算法 运用到厄密特矩阵上,第一步将输入的厄密特矩阵变成三对角矩阵。一个三对角矩阵利用
3、特定的存储方案 比一般矩阵所用的存储空间也少得多。 例如, LAPACKFortran 包将一个n- 维非对称三对角矩阵存为三个 1- 维数列, 其中一个长n 包含对角元素,其它两个长为n- 1 包含下对角线和上对角线元素。三对角矩阵方程,能用一种需要O(n) 次操作的 特殊的算法 解出来(Golub and Van Loan )。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 16 页 - - - - - - - - - 正交矩阵概述正交矩阵是实数特殊化的酉矩阵 , 因
4、此总是 正规矩阵 。 尽管我们在这里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。要看出与内积的联系, 考虑在 n 维实数 内积空间 中的关于正交基写出的向量v。v 的长度的平方是 vTv。如果矩阵形式为Q v 的线性变换保持了向量长度,则。所以有限维线性 等距同构 ,比如 旋转、反射和它们的组合,都产生正交矩阵。反过来也成立:正交矩阵蕴涵了正交变换。但是,线性代数 包括了在既不是有限维的也不是同样维度的空间之间的 正交变换 ,它们没有等价的正交矩阵。有多种原由使正交矩阵对理论和实践是重要的。n3 n 正交矩阵形成了一个
5、群,即指示为O (n)的正交群 ,它和它的子群广泛的用在数学和物理科学中。例如,分子的点群是 O (3)的子群。因为浮点版本的正交矩阵有有利的性质,它们是字数值线性代数 中很多算法比如 QR分解的关键,通过适当的规范化,离散余弦变换 (用于 MP3压缩)可用正交矩阵表示。例子下面是一些小正交矩阵的例子和可能的解释。恒等变换。旋转 16.26。针对 x 轴反射。旋转反演( rotoinversion):轴 (0,-3/5,4/5),角度 90。置换坐标轴。基本构造低维度最简单的正交矩阵是13 1 矩阵1 和 - 1 ,它们可分别解释为恒等和实数线针对原点的反射。如下形式的 23 2 矩阵名师资料
6、总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 16 页 - - - - - - - - - 它的正交性要求满足三个方程。在考虑第一个方程时, 不丢失一般性而设p = cos , q = sin ; 因此要么 t = - q, u = p要么t = q, u = -p。我们可以解释第一种情况为旋转( = 0 是单位矩阵 ),第二个解释为针对在角 /2 的直线的 反射。旋转反射在 45的反射对换 x 和 y; 它是置换矩阵 , 在每列和每行带有一个单一的1( 其他都是 0): 。单
7、位矩阵也是置换矩阵。反射是它自己的逆,这蕴涵了反射矩阵是对称的(等于它的转置矩阵)也是正交的。两个旋转矩阵的积是一个旋转矩阵,两个反射矩阵的积也是旋转矩阵。更高维度不管维度, 总是可能把正交矩阵按纯旋转与否来分类,但是对于 33 3 矩阵和更高维度矩阵要比反射复杂多了。例如,和表示通过原点的 反演和关于 z 轴的旋转反演 ( 逆时针旋转 90后针对 x- y 平面反射,或逆时针旋转 270后对原点反演 )。旋转也变得更加复杂;它们不再由一个角来刻画,并可能影响多于一个平面子空间。尽管经常以一个轴和角来描述33 3 旋转矩阵,在这个维度旋转轴的存在是偶然的性质而不适用于其他维度。但是,我们有了一
8、般适用的基本建造板块如置换、反射、和旋转。基本变换最基本的置换是换位( transposition),通过交换单位矩阵的两行得到。任何n3n置换矩阵都可以构造为最多n- 1 次换位的积。构造自非零向量 v 的 Householder 反射为。这里的分子是对称矩阵,而分母是v 的平方量的一个数。这是在垂直于v 的超平面上的反射 (取负平行于 v 任何向量分量)。 如果 v 是单位向量,则 Q = I - 2vvT就足够了。Householder名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - -
9、 第 3 页,共 16 页 - - - - - - - - - 反射典型的用于同时置零一列的较低部分。任何 n3 n 正交矩阵都可以构造为最多n 次这种反射的积。Givens 旋转作用于由两个坐标轴所生成的二维(平面)子空间上,按选定角度旋转。它典型的用来置零一个单一的次对角线元素(subdiagonal entry)。任何 n3 n 的旋转矩阵都可以构造为最多n(n- 1)/2 次这种旋转的积。在3x3 矩阵的情况下,三个这种旋转就足够了;并且通过固定这个序列,我们可以用经常叫做欧拉角 的三个角来(尽管不唯一)描述所有33 3 旋转矩阵。雅可比旋转 有同 Givens 旋转一样的形式,但是被
10、用做相似变换 ,选择来置零 23 2 子矩阵的两个远离对角元素(off-diagonal entry)。性质矩阵性质实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间Rn的正交规范基 ,它为真当且仅当它的行形成Rn的正交基。假设带有正交(非正交规范)列的矩阵叫正交矩阵可能是诱人的,但是这种矩阵没有特殊价值而没有特殊名字;他们只是MTM = D,D是对角矩阵 。任何正交矩阵的 行列式 是 +1 或- 1。这可从关于行列式的如下基本事实得出: 。反过来不是真的;有 +1 行列式不保证正交性,即使带有正交列,可由下列反例证实。对于置换矩阵,行列式是 +1 还是-1 匹配置换
11、是偶还是奇的 标志,行列式是行的交替函数。比行列式限制更强的是正交矩阵总可以是在复数上可对角化 来展示 特征值 的完全的集合,它们全都必须有(复数)绝对值 1。群性质正交矩阵的逆是正交的,两个正交矩阵的积是正交的。事实上,所有n3 n 正交矩阵的集合满足 群的所有公理。它是n( n-1)/2 维的紧致李群 ,叫做 正交群 并指示为 O (n)。行列式为 +1 的正交矩阵形成了 路径连通 的子群指标 为 2 的 O (n)正规子群 ,叫做旋转的特殊正交群SO(n)。商群O(n)/SO(n)同构于O(1),带有依据行列式选择 +1 或 -1 的投影映射。带有行列式 - 1 的正交矩阵不包括单位矩阵
12、,所以不形成子群而只是陪集;它也是(分离的)连通的。所以每个正交群被分为两个部分;因为投影映射分裂,O (n)是 SO(n)与 O (1)的半直积 。用实用术语说,一个相当的陈述是任何正交矩阵可以通过采用一个旋转矩阵并可能取负它的一列来生成,如我们在23 2 矩阵中看到的。如果 n 是奇数,则半直积实际上是 直积, 任何正交矩阵可以通过采用一个旋转矩阵并可能取负它的所有列来生成。现在考虑 ( n+1)3 (n+1)右底元素等于 1 的正交矩阵。最后一列(和最后一行)的余下元素必须是零,而任何两个这种矩阵的积有同样的形式。余下的矩阵是n3 n 正交矩阵;因此 O(n)是 O ( n+1) ( 和
13、所有更高维群 ) 的子群。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 16 页 - - - - - - - - - 因为 Householder 正交矩阵形式的基本反射可把任何正交矩阵简约成这种约束形式,一系列的这种反射可以把任何正交矩阵变回单位矩阵;因此正交群是反射群 。最后一列可以被固定为任何单位向量, 并且每种选择给出不同的O (n) 在 O ( n+1)中的复本;以这种方式 O ( n+1)是在单位球 Sn与纤维 O (n)上的丛。类似的,SO(n)是SO(n
14、+1)的子群;任何特定正交矩阵可以使用类似过程通过Givens平面旋转来生成。丛结构持续: SO (n)? SO ( n+1) Sn。一个单一旋转可以在最后一列的第一行生成一个零, 而 n- 1 次旋转序列将置零n3 n 旋转矩阵的除了最后一列的最后一行的所有元素。因为平面是固定的,每次旋转只有一个自由度,就是它的角度。通过归纳,SO (n)因此有自由度, O (n)也是。置换矩阵简单一些;它们不形成李群,只是一个有限群,n! 次对称群 Sn。通过同类的讨论,Sn是 Sn+1的子群。偶置换生成行列式 +1 的置换矩阵的子群, n!/2次交错群 。规范形式更广泛的说,任何正交矩阵的效果分离到在正
15、交二维空间上的独立动作。就是说,如果Q是狭义正交的, 则你可以找到(旋转)改变基的一个正交矩阵P,把 Q带回到分块对角形式 : (n 偶数),(n 奇数)。这里的矩阵 R1,.,Rk是 23 2 旋转矩阵,而余下的元素是零。作为例外,一个旋转块可以是对角的, I 。因此如果需要的话取负一列,并注意23 2 反射可对角化为 +1 和-1,任何正交矩阵可变为如下形式, 矩阵 R1, , , Rk给出位于 复平面 中单位圆上的特征值的共轭对;所以这个分解复合确定所有带有 绝对值 1 的特征值 。 如果 n 是奇数,至少有一个实数特征值 +1 或- 1; 对于 33 3 旋转,关联着 +1 的特征向量
16、是旋转轴。数值线性代数优点数值分析 自然的利用了正交矩阵的很多数值线性代数 的性质。例如,经常需要计算空间的正交基,或基的正交变更;二者都采用了正交矩阵的形式。有行列式1 和所有模为 1 的特征值是对 数值稳定性 非常有利的。一个蕴涵是 条件数 为 1 ( 这是极小的 ) ,所以在乘以正交矩阵的时候错误不放大。 很多算法为此使用正交矩阵如Householder 反射和 Givens 旋转。有名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 16 页 - - - - - -
17、- - - 帮助的不只是正交矩阵是可逆的,还有它的逆矩阵本质上是免花费的,只需要对换索引(下标)。置换是很多算法成功的根本,包括有局部定支点(partial pivoting)的运算繁重的 高斯消去法 (这里的置换用来定支点)。但是它们很少明显作为矩阵出现;它们的特殊形式允许更有限的表示,比如n个索引的列表。同样的,使用 Householder 和 Givens 矩阵的算法典型的使用特殊方法的乘法和存储。例如,Givens 旋转只影响它所乘的矩阵的两行,替代完全的n3次的矩阵乘法 为更有效的 n 次运算。在使用这些反射和旋转向矩阵介入零的时候,腾出的空间足够存储充足的数据来重生成这个变换。编辑
18、 分解一些重要的 矩阵分解 (Golub & Van Loan, 1996)涉及到了正交矩阵,包括: QR分解M = QR , Q 正交, R上三角。奇异值分解M = UVT, U 和 V 正交,非负对角。谱分解S = QQT, S对称, Q正交, 对角。极分解M = QS , Q正交, S对称非负确定。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 16 页 - - - - - - - - - 正定矩阵在线性代数 里,正定矩阵 (即“正数 - 确定-矩阵”)是 埃尔米特
19、矩阵 的一种,有时会简称为正定阵 。在双线性代数 中,正定矩阵的性质类似复数中的正实数 。与正定矩阵相对应的线性算子 是对称正定双线性形式 (复域中则对应 埃尔米特正定双线性形式)。定义一个 n 3n 的实 对称矩阵M 是正定的当且仅当 对于所有的非零实系数 向量 z,都有zTMz 0 。其中 zT表示 z 的转置。对于复数的情况,定义则为:一个n 3n 的埃尔米特矩阵M 是正定的当且仅当对于每个非零的复向量 z,都有 z*Mz 0 。其中 z*表示 z 的共轭转置 。由于 M 是埃尔米特矩阵 ,经计算可知,对于任意的复向量z,z*Mz必然是实数,从而可以与0 比较大小。因此这个定义是自洽的。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年2022年各种矩阵三角矩阵正定矩阵正交矩阵伴随矩阵 2022 各种 矩阵 三角 正定 正交 伴随
限制150内