2022年初中数学复习第四讲整式与分式.docx
《2022年初中数学复习第四讲整式与分式.docx》由会员分享,可在线阅读,更多相关《2022年初中数学复习第四讲整式与分式.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 学习必备 欢迎下载中学数学复习 一、学问结构第四讲整式与分式代数式整数分式分式分式因式整式整式的分式的整式的运运算的基的意算(加、有关概指数分解幂的(加、本性义减、乘、念运算减、乘、质除、乘方)除)说明:在本部分,代数式分为整式和分式争论;在实数范畴内,代数式分为有理 式和无理式,有理式分为整式和分式,整式分为单项式和多项式;二、学问点梳理1.代数式 :用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式;用数值代替代数式里的字母,根据代数式中的运算关系运算得出的结 果叫做 代数式的值 ;2.单项式 :由数与字母的积或字母与字母的积所组成
2、的代数式叫做单项式(单独 一个数也是单项式);单项式中的数字因数叫做这个单项式的 系数(包 括符号);一个单项式中,全部字母的指数的和叫做这个单项式的 次数 ;3.多项式 :由几个单项式的和组成的代数式叫做多项式;在多项式中的每个单项 式叫做多项式的 项,不含字母的项叫做 常数项 ;次数最高项的次数就 是这个多项式的 次数 ;4.整式 :单项式、多项式统称为整式;5.分式 :两个整式 A、B 相除,即 A B 时,可以表示为 A .假如 B 中含有字母,B 那么A 叫做分式, A 叫做分式的分子, B 叫做分式的分母;B 6.同类项 :所含的字母相同,且相同的字母的指数也相同的单项式叫做同类项
3、;把多项式中的同类项合并成一项,叫做合并同类项 ;一个多项式 合并后含有几项,这个多项式就叫做几项式;合并同类项的法就:把同类 项的系数相加的结果作为合并后的系数,字母和字母的指数不变(合并同类项,法就不能忘,只求系数代数和,字母指数不变样);7.整式的加减 :整式的加减就是单项式、多项式的加减,可利用去括号法就和合并同类项来完成整式的加减运算;去括号法就 :括号前面是“+”号,去掉“ +” 号和括号, 括号里的各项不变号; 括号前面是 “ ”号,去掉“ ” 号和括号,括号里的各项都变号;(括号前面是 “ +”名师归纳总结 - - - - - - -第 1 页,共 13 页精选学习资料 - -
4、 - - - - - - - 学习必备欢迎下载)号,去掉括号不变号;括号前面是“ ” 号,去掉括号都变号;8.同底数幂的乘法 :同底数的幂相乘,底数不变,指数相加;amn a =am+n.(m、n 都是正整数)9.幂的乘方 :幂的乘方,底数不变,指数相乘,即amnm n = a .(m、n 都是正整数)10.积的乘方 :积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘,即abnn n=a b .(n 为正整数)11.整式的乘法 :(1)单项式与单项式相乘:单项式与单项式相乘,把它们的系 数、同底数幂分别相乘的积作为积的因式,其余字母连同它 的指数不变,也作为积的因式;(2)单项式与多项式
5、相乘:单项式与多项式相乘,用单项式乘 以多项式的每一项,再把所得的积相加;(3)多项式与多项式相乘:多项式与多项式相乘,先用一个多 项式的每一项乘以另一个多项式的每一项,再把所得到的积相加;12.同底数幂的除法 :同底数幂相除,底数不变,指数相减;即a m a n a m .(m、n 是正整数且 mn,a 0). n任何不等于零的数的零次幂为 1,即0 a 1 a 013.整式的除法 :(1)单项式除以单项式:两个单项式相除,把系数、同底数幂 分别相除作为商的因式, 对于只在被除式里含有的字母, 就 连同它的指数作为商的一个因式;(2)多项式除以单项式:多项式除以单项式,先把多项式的每 一项除
6、以单项式,再把所得的商相加;14.分式的基本性质 :分式的分子和分母都乘以(或除以)同一个不为零的整式,分式的值不变,即AAMANBBMAN其中 M、N 为整式,且 B 0,M 0,N 0. 15.约分 :把一个分式的分子与分母中相同的因式约去的过程,叫做约分;假如一个分式的分子与分母没有相同的因式(叫做最简分式 ;1 除外),那么这个分式化简分式时, 假如分式的分子和分母都是单项式,约分时约去它们系数 的最大公因数、相同因式的最低次幂;假如分子、分母是多项式,先分 解因式,再约分;化简分式时要将分式化成最简分式或整式;名师归纳总结 - - - - - - -第 2 页,共 13 页精选学习资
7、料 - - - - - - - - - 学习必备 欢迎下载16.通分 :将几个异分母的分式分别化为与原先分式的值相等的同分母分式的过 程叫做通分;17.分式的运算 :(1分式的乘除 :两个分式相乘,将分子相乘的积作分子,分母 相乘的积作分母;分式除以分式,将除式的分子和分母颠倒 位置后,再与被除式相乘;用式子表示为:ACA C ,B DDA D .B CBDACABDBC2分式的加减 :同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先将它们通分,然后进行加减;18.乘法公式 :(1)平方差公式 :两个数的和与这两个数的差的乘积等于这两个 数的平方差,即ababa2b 2.(2)完全
8、平方公式 :两数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即a b2a22 ab2 b,因式ab2a22 abb2.19.因式分解 :把一个多项式化为几个整式的积的形式,叫做把这个多项式分解 ,也叫做把这个多项式 分解因式 ;(1)提取公因式法 :(一个多项式中每一项都含有的因式叫做这个 多项式的公因式 ;)假如一个多项式的各项含有公因式,那么 可以把该公因式提取出来作为多项式的一个因式,提取公因式 后的式子放在括号里, 作为另一个因式, 这种分解因式的方法 叫做提取公因式法;提取的公因式应是各项系数的最大公因数(系数都是整数时)与各项都含有的相同字母的最低次幂的积;(2
9、)公式法 :逆用乘法公式将一个多项式分解因式的方法叫做公式 法;平方差公式 :假如一个多项式能写成两个数的平方差的形式,那么就可以运用平方差公式把它因式分解,它等于这两个数 的和与这两个数的差的积;完全平方公式 :假如一个多项式能写成两个数的平方和,加 上(或减去) 这两个数的积的两倍, 那么就可以运用完全平方 公式把它分解因式,它等于这两个数的和(或差)的平方;(3)十字相乘法 :假如二次三项式x2pxq 中的常数项 q 能分解成两个因数 a 、b 的积,而且一次项系数 p 又恰好是 a+b,那名师归纳总结 - - - - - - -第 3 页,共 13 页精选学习资料 - - - - -
10、- - - - 么x2px学习必备欢迎下载q 就可以进行如下的因式分解,即x2pxqx2ab xabxaxb.一般的,上式可以用十字交叉线表示:x +a x +b (4)分组分解法 :利用分组来分解因式的方法叫做分组分解法;20.分式方程 :分母中含有未知数的方程叫做分式方程;一元方程的解也叫做方程的根,在分式方程变形时, 有时可能产生不适合原分式方程的根,这种根叫做原分式方程的增根;21.整数指数幂:为了使同底数幂相除的性质在m、n 是正整数,且 mn 时仍成立,规定ap1(其中 a 0,p 是自然数);ap整数指数幂运算性质:amn m + na = a (m、n 为整数, a 0)m a
11、abnm n = a (m、n 为整数, a 0)nn n=a b (n 为整数, a 0,b 0). 三、基本要求1.懂得用字母表示数的意义;懂得代数式的有关概念;2.通过列代数式,把握文字语言与数学式子的表述之间的转换,领会字母“ 代”数的数学思想;会求代数式的值;3.把握整式的加、减、乘、除及乘方的运算法就,把握平方差公式、两数和(差)的平方公式;4.懂得因式分解的意义,把握提取公因式法、公式法、二次项系数为 1 时的十字 相乘法、分组分解法等因式分解的基本方法;5.懂得分式的有关概念及其基本性质,把握分式的加、减、乘、除运算;6.懂得正整数指数幂、零指数幂、负整数指数幂的概念,把握有关
12、整数指数幂的 乘(除)、乘方等运算的法就;说明:在求代数式的值时,不涉及繁难的运算;不涉及繁难的整式运算,多项式除法中的除式限为单项式;在因式分解中, 被分解的多项式不超过四项, 不涉及添项、拆项等技巧;不涉及繁复的分式运算;名师归纳总结 - - - - - - -第 4 页,共 13 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载四、重点和难点重点:整式与分式的运算,因式分解的基本方法,整数指数幂的运算;难点:挑选适当的方法因式分解及代数式的混合运算;五、中考考点考点 1:代数式的有关概念 考核要求:(1)把握代数式的概念,会判别代数式与方程、不等式的区分;(2)知道
13、代数式的分类及各组成部分的概念,如整式、单项式、多项式;(3)知道代数式的书写格式 . 留意单项式与多项式次数的区分.例 1 (1)以下选项中是代数式的是 A 3 x8yB x29C xy4D x5y(2)1 x 32y 的系数是,次数是(3)2x2x1是次项式;(4)将xy222 x yx34y31按字母 x 的降幂排列分析: 1用运算符号 和括号 把数或表示数的字母连接而成的式子叫做代数式; 2单项式的系数包括符号,次数是全部字母的指数的和;3次数最高项的次数就是这个多项式的次数;(4)按 x 的降幂排列,与 y 无关, y 相当于是常数;三(4)x322 x yxy24y31解:(1)A
14、 (2)13 (3)二3考点 2:列代数式和求代数式的值考核要求:(1)会用代数式表示常见的数量,会用代数式表示含有字母的简单应用题的结果;(2)通过列代数式,把握文字语言与数学式子表述之间的转换;(3)在求代数式的值的过程中,进行有理数的运算 例 2 (1)用代数式表示:. 比 a 的 3 倍仍多 2 的数;x 的立方根与 2 的和. 名师归纳总结 (2)当 a=2,a=-3,a=1 2时,求代数式3 a a21的值;第 5 页,共 13 页解:(1)3a+2 3 x2(2) 9 9 98- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载考点 3:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年初 数学 复习 第四 整式 分式
限制150内