2022年常用逻辑用语复习教案.docx
《2022年常用逻辑用语复习教案.docx》由会员分享,可在线阅读,更多相关《2022年常用逻辑用语复习教案.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 2-1 第一章学习必备欢迎下载常用规律用语小结与复习 教案 【学问归类】 1命题:能够判定真假的陈述句 . 2. 四种命题的构成 : 原命题 : 如 p 就 q ; 逆命题 : 如 q 就 p ; 否命题 : 如 p 就q ; 逆否命题 : 如 q 就 p . 一个命题的真假与其他三个命题的真假有如下关系 : 原 命 题 为 真 , 它 的 逆 命 题 真假不肯定 真假不肯定 . . 原 命 题 为 真 , 它 的 否 命 题原命题为真 , 它的逆否命题 真命题 . 逆命题为真 , 它的否命题 真命题 . 原命题与逆否命题互为逆否命题, 它们的
2、真假性是 同真同假 . 逆命题与否命题互为逆否命题 , 它们同真同假 . 3. 充分条件与必要条件 : pq : p 是 q 充分条件 ; q是 p 必要条件 ; ”“”“” 表示,pq p是 的充分必要条件,简称充要条件. 4. 规律联接词 : “ 且” 、“ 或” 、“ 非” 分别用符号“意义为:或:两个简洁命题至少一个成立;且:两个简洁命题都成立;非:对一个 命题的否定 . 按要求写出下面命题构成的各复合命题,p : 矩形有外接圆 ; q 矩形有内切圆 . p 或 q : 矩形有外接圆或内切圆(真)p 且 q : 矩形有外接圆且有内切圆(假)非 p : 矩形没有外接圆(假)并注明复合命题
3、的 “ 真” 与“ 假” . 5. 全称量词与全称命题:常用的全称量词有:“ 全部的” 、“ 任意的” 、“ 每一个” 、“ 一切” 、“ 任给” 等,并用符号“命题 . ” 表示 . 含有全称量词的命题叫全称名师归纳总结 - - - - - - -第 1 页,共 7 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载6. 存在量词与特称命题: 常用的存在量词有:“ 存在一个” 、“ 至少有一个” 、“ 有些” 、“ 有的” 、“ 某个” 等,并用符号“” 表示 . 含有存在量词的命题叫特称命题 . 7. 对常用的正面表达的词语填上它们的否定词语: 任意的正面词语等于 =
4、大于 小于 是都是否定词语不 等 于不 大 于不 小 于不是不都是某个正 面 词所 有任 意 两至多有一至少有一个至多有 n 个语的个个一个也没有至少有 n+1 个否 定 词某些某两个至少有两语个8. 反证法的规律基础 : 1 p 与p 的真假相异 , 因此 , 欲证 p 为真 , 可证p 为假 , 即将p 作为条件进行推理 , 假如导致冲突 , 那么p 必为假 , 从而 p 为真 . 2 “如 p , 就 q” 与“如 q 就 p” 等价 . 欲证“如 p , 就 q” 为真 , 可由假设“q ” 来证明“p ” , 即将“q ” 作为条件进行推理 , 导致与已知条件 p 冲突 . (3)由
5、“如 p , 就 q” 的真假表可知,“如 p , 就 q” 为假,当且仅当 p 真 q 假,所以我们假设“p 真 q 假” ,即从条件 p 和 q 动身进行推理,假如导致与公理、定理、定义冲突,就说明这个假设是错误的,从而就证明白“如 p , 就 q” 是真命题. 后两条的规律基础 , 可以概括成一句话 : “ 否定结论,推出冲突”. 【题型归类】题型一:四种命题之间的关系2 2例 1 命题 “如a b 0 a、b R),就 a=b=0” 的逆否命题是( D ). A 如 a b 0a,b R, 就 a 2b 20 B 如 a=b 0 a,b R, 就 a 2b 20 C 如 a 0 且 b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 常用 逻辑 用语 复习 教案
限制150内