2022年Matlab数学建模实验报告 .pdf





《2022年Matlab数学建模实验报告 .pdf》由会员分享,可在线阅读,更多相关《2022年Matlab数学建模实验报告 .pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学建模数学实验报告实验序号:实验一日期:班级姓名学号实验名称动物的体重变化问题背景描述:某动物每天从食物中得到2500 卡的热量,其中1200 卡用于基本的新陈代谢, 每天每 kg 的体重要消耗16 卡,假如它每增加1kg的体重要 10000 卡的热量。实验目的:需要通过建立动物体重变化的模型,并作出动物体重随时间变化的曲线。数学模型:设动物质量m,时间 t,时间增量 dt 内质量增加为dm。且设动物的初始质量为m0=5kg,依题意我们可以得到关系式:10000dm+16(m+dm)dt=(2500-1200)dt 式子中 dm*dt 这个量比较小可以忽略不计。则可以得到以下式子:10000
2、dm+16m*dt=1300dt 则可以得到dm/dt=(1300-16m)/10000 并且有 m(t=0)=5 则可以解得: m=325/4 - 305/(4*exp(t/625) 由此就可以画出质量的变化曲线。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 17 页 - - - - - - - - - 数学建模实验所用软件及版本:Matlab 7.10.0 程序代码:dsolve(Dy=(1300-16*m)/10000,y(0)=5,x) %这个是解微分方程。ez
3、plot(325/4 - 305/(4*exp(t/625),0,2000) title( 动物质量变化 ) xlabel(t) ylabel(m) %质量关于时间变化的曲线名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 17 页 - - - - - - - - - 数学建模实验结果:解微分方程得到的结果为 dsolve(D1y=(1300-16*y)/10000,y(0)=5,x) ans = 325/4 - 305/(4*exp(x/625) 作出的质量随时间变化曲线
4、为:从图中可以看出动物随着时间的推移,质量是递增的,不过递增的速率逐渐减小,最后趋于稳定。通过带入数据计算可以得到的结果是如果动物活的时间足够长的话就可以达到质量最大值为81.25kg。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 17 页 - - - - - - - - - 数学建模实验总结:这个实验主要一开始没有想到把那个dmdt 消去就比较纠结,不过总的来说是比较简单的。从这我们可以知道在建立数学模型的时候有时候要有适当的忽略一些次要因素。抓住主要因素来分析。可以
5、事半功倍。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 17 页 - - - - - - - - - 数学建模实验序号:实验二日期:班级姓名学号实验名称有关淘汰赛的比赛场次问题问题背景描述:37 支球队进行冠军争夺赛,每轮比赛中出场的每两只队伍中的获胜者以及轮空者进入下一轮,直至比赛结束。实验目的:需要求出所进行的比赛总共有多少场。数学模型:把所有的队伍除以2,得到的整数部分就是这一轮的比赛场次,一直循环着除以2,知道最后整数部分为零。把所得的所有场次累加就可以得到最终
6、的总的比赛场次。参赛队伍数m=37,m=m/2 ,比赛场次 n=n+m(n 的初值为 0); 循环即可。实验所用软件及版本:Matlab 7.10.0 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 17 页 - - - - - - - - - 数学建模程序代码:m=37; n=0; while m1 m=m/2; n=n+floor(m); m=ceil(m); end n 实验结果: m=37; n=0; while m1 m=m/2; n=n+floor(m); m
7、=ceil(m); end n n = 36 可得,最终结果的总比赛场次为36 场。实验总结:应该说这个实验算是很简单的一个了,所以做起来没什么难题。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 17 页 - - - - - - - - - 数学建模实验序号:实验三日期:班级姓名学号实验名称架设电缆的总费用问题背景描述:一条河宽 1km,两岸各有一个城镇A 与 B,A 与 B 的直线距离为 4km,今需铺设一条电缆连接A 于 B,已知地下电缆的铺设费用是 2 万元 /k
8、m,水下电缆的修建费用是4 万元 /km。实验目的:通过建立适当的模型,算出如何铺设电缆可以使总花费最少。数学模型:如图中所示, A-C-D-B 为铺设的电缆路线,我们就讨论a=30 度,AE(A 到河岸的距离)=0.5km,则图中:DG=4-AC cos b -1/tan c ; BG=0.5km AC=AE/sin b CD=EF/sin c=1/sin c BD=BGD22G则有总的花费为:W=2* (AC+BD )+4*CD ;我们所要做的就是求最优解。实验所用软件及版本:Matlab 7.10.0 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年Matlab数学建模实验报告 2022 Matlab 数学 建模 实验 报告

限制150内