《2022年2022年集合教案第课 .pdf》由会员分享,可在线阅读,更多相关《2022年2022年集合教案第课 .pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 课题:1.1集合集合的概念(1)教学目的:( 1)使学生初步理解集合的概念,知道常用数集的概念及记法( 2)使学生初步了解“属于”关系的意义( 3)使学生初步了解有限集、无限集、空集的意义教学重点: 集合的基本概念及表示方法教学难点: 运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合授课类型: 新授课课时安排: 1 课时教具: 多媒体、实物投影仪内容分析:1集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知
2、识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认
3、识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的 “ 一般地,某些指定的对象集在一起就成为一个集合,也简称集 ” 这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2教材中的章头引言;3集合论的创始人康托尔(德国数学家)(见附录);4 “物以类聚” , “人以群分” ;5教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么
4、?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合 ,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 5 页 - - - - - - - - - 2 也简称 集.集合中的每个对象叫做这个集合的元素. 定义: 一般地,某些指定的对象集在一起就成为一个集合1、集合的概念(1)集合 :某些指定的对象集在一起就形成一个集合(简称集)(2)元素 :集合中每个对象叫做
5、这个集合的元素2、常用数集及记法(1)非负整数集 (自然数集) :全体非负整数的集合记作 N,,2, 1 , 0N(2)正整数集 :非负整数集内排除0 的集 记作 N*或 N+, 3, 2, 1*N(3)整数集 :全体整数的集合记作 Z , ,210Z(4)有理数集 :全体有理数的集合记作 Q , 整数与分数Q(5)实数集 :全体实数的集合记作 R 数数 轴 上 所 有 点 所 对 应 的R注: (1)自然数集与非负整数集是相同的,也就是说,自然数集包括数 0( 2)非负整数集内排除0 的集记作 N*或 N+Q、Z、R 等其它数集内排除0 的集,也是这样表示,例如,整数集内排除0 的集,表示成
6、Z*3、元素对于集合的隶属关系(1)属于:如果a 是集合 A 的元素,就说a属于 A,记作 aA (2)不属于:如果a 不是集合A 的元素,就说a不属于 A,记作Aa4、集合中元素的特性(1) 确定性 :按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2) 互异性 :集合中的元素没有重复(3)无序性 :集合中的元素没有一定的顺序(通常用正常的顺序写出)5、集合通常用大写的拉丁字母表示,如A、B、C、P、Q,元素通常用小写的拉丁字母表示,如a、b、c、p、q,“”的开口方向,不能把aA 颠倒过来写三、练习题:1、教材 P5练习 1、2 2、下列各组对象能确定一个集合吗?(
7、1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3, 4,5 (有重复)3、设 a,b 是非零实数,那么bbaa可能取的值组成集合的元素是_-2,0,2_名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 5 页 - - - - - - - - - 3 4、由实数x,x,x,332,xx所组成的集合,最多含(A )(A)2 个元素(B)3 个元素(C)4 个元素(D)5 个元素5、设集合G 中的元素是所有形如ab2(aZ, bZ)的数,求证:(1) 当
8、xN 时, xG; (2) 若 xG,yG,则 x yG,而x1不一定属于集合G证明 (1):在 ab2(aZ, bZ)中,令 a=xN,b=0, 则 x= x 0*2= ab2G,即 xG 证明 (2): xG,yG,x= ab2(aZ, bZ),y= c d2(cZ, dZ)x+y=( a b2)+( c d2)=(a+c)+(b+d)2aZ, bZ,cZ, dZ (a+c) Z, (b+d) Z x+y =(a+c)+(b+d)2G,又211bax2222222babbaa且22222,2babbaa不一定都是整数,211bax2222222babbaa不一定属于集合G四、小结: 本节课
9、学习了以下内容:1集合的有关概念: (集合、元素、属于、不属于)2集合元素的性质:确定性,互异性,无序性3常用数集的定义及记法五、课后作业 :六、板书设计 (略)七、课后记:八、附录:康托尔简介发疯了的数学家康托尔(Georg Cantor,18451918)是德国数学家,集合论的创始者1845 年 3月 3 日生于圣彼得堡, 1918年 1 月 6 日病逝于哈雷康托尔 11 岁时移居德国, 在德国读中学1862 年 17 岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866 年曾去格丁根学习一学期1867 年以数论方面的论文获博士学位1869 年在名师资料总结 - - -精品资料欢迎下载
10、 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 5 页 - - - - - - - - - 4 哈雷大学通过讲师资格考试,后在该大学任讲师,1872 年任副教授, 1879 年任教授由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为 “ 悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在 1874 1876 年期间,不到30 岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应, 也能和空间中的点一一对应这样看起来, 1 厘米长的线段内的点与
11、太平洋面上的点,以及整个地球内部的点都“ 一样多 ” ,后来几年,康托尔对这类“ 无穷集合 ” 问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂 有人说, 康托尔的集合论是一种“ 疾病 ” ,康托尔的概念是“ 雾中之雾 ” ,甚至说康托尔是“ 疯子 ” 来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院真金不怕火炼,康托尔的思想终于大放光彩1897 年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“ 可能是这个时代所能夸耀的最
12、巨大的工作” 可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918 年 1 月 6 日,康托尔在一家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础从而解决 17 世纪牛顿( I.Newton ,16421727)与莱布尼茨( G.W.Leibniz ,16461716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19 世纪开始,柯西(A
13、.L.Cauchy ,17891857)、魏尔斯特拉斯(K.Weierstrass,18151897)等人进行的微积分理论严格化所建立的极限理论克隆尼克( L.Kronecker ,18231891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒 ( H.Poi-ncare,18541912):我个人, 而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文
14、字去完全定义好的东西集合论是一个有趣的 “ 病理学的情形 ” ,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(C.H.Her-mann Wey1 ,18851955)认为,康托尔关于基数的等级观点是雾上之雾 菲利克斯克莱因(F.Klein ,18491925)不赞成集合论的思想数学家 HA施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从 1884 年春天起,康托尔患了严重的忧郁症, 极度沮丧, 神态不安, 精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学当局把他的数学教授职位改为哲学教授职位健康状况
15、逐渐恶化,1918 年,他在哈勒大学附属精神病院去世流星埃伽罗华(E.Galois, 18111832),法国数学家伽罗华 17 岁时,就着手研究数学中最困难的问题之一一般次方程求解问题许多数学家为之耗去许多精力,但都失败了直到 1770 年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想, 即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支 群论,
16、数学发展史上作出了重大贡献1829 年,他把关于名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 5 页 - - - - - - - - - 5 群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在 1830 年 1 月 18 日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830 年 2 月,伽罗华将他的研究成果比较详细地写成论文交上去
17、了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书JB傅立叶,但傅立叶在当年5 月就去世了,在他的遗物中未能发现伽罗华的手稿1831 年 1 月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家SK泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832 年 5 月 30 日,临死的前一夜, 他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832 年 5 月 31 日离开了人间 死因参加无意义的决斗受重伤1846 年,他死后14 年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的数学杂志上名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 5 页 - - - - - - - - -
限制150内