2022年不等式的证明三导学案.docx
《2022年不等式的证明三导学案.docx》由会员分享,可在线阅读,更多相关《2022年不等式的证明三导学案.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -名师精编优秀教案,2)选修 4-5 学案2.1.3不等式的的证明3姓名2.换元法:一般由代数式的整体换元、三角换元,换元时要留意等价性. 学习目标 :1. 懂得并把握 反证法、换元法与放缩法; .学问情形 :2. 会利用反证法、换元法与放缩法证明不等式常用的换元有三角换元有:1. 不等式证明的基本方法:1 0. 比差法 与比商法 两正数时 1 0已知2 x2 y2 a,可设,;20. 综合法 和分析法 2 0已知2 x2x2 yy21,可设, 0.r1 ;3 0. 反证法 、换元法 、放缩法3 0已知1,可设
2、,a2b22. 综合法 :从已知条件、不等式的性质、基本不等式等动身 , 例 2设实数x y 满意2 xy2 11,当xyc0时, c 的取值范畴是(通过 规律推理 , 推导出所要证明的结论 . 这种证明方法叫做综合法. 又叫 由导法. A 21,B ,21C 21,D 1用综合法证明不等式的规律关系:AB 1B 2B nB例 3 已知x2y21,求证:1a2yax1a23. 分析法: 从要证的结论动身 , 逐步寻求使它成立的充分条件, 直至所需条件为已知条件或一个明显成立的事实定义、公理或已证的定理、性质等 , 从而得出要证的命题成立,这种证明方法叫做分析法. 这是一种执索的摸索和证明方法
3、.BB 1B 2B nA用分析法证明不等式的规律关系:结 步步寻求不等式 已论成立的充分条件知.新知建构 : 1. 反证法 :利用反证法证明不等式,一般有下面几个步骤:第一步分清欲证不等式所涉及到的条件和结论;. 3. 放缩法 :“ 放” 和“ 缩” 的方向与“ 放” 和“ 缩” 的量的大小n,其次步作出与所证不等式相反的假定;第三步从条件和假定动身,应用证确的推理方法,推出冲突结果;第四步肯定产生冲突结果的缘由,在于开头所作的假定不正确,于是原证不等式成立例 1 已知 a + b + c 0 , a b + bc + ca 0 , a bc 0 ,求证: a , b, c 0 .由题目分析、
4、多次尝试得出, 要留意放缩的适度 . 常用的方法是:添加或舍去一些项,如:a21a,n n1 将分子或分母放大(或缩小)如:11111n nn2n nlg4 ;应用“ 糖水不等式”:“ 如 0ab,m0,就aam”bbm利用基本不等式,如:lg3 lg52利用函数的单调性细心整理归纳 精选学习资料 利用函数的有界性:如:sin x 1 xR ; 第 1 页,共 8 页 - - - - - - - - - - - - - - - - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -肯定值不等式:a1b ab ab ;21k1k
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 不等式 证明 三导学案
限制150内