2016年高考-文数热点题型和提分秘籍专栏材料05函数的单调性最值奇偶性与周期性.doc
《2016年高考-文数热点题型和提分秘籍专栏材料05函数的单调性最值奇偶性与周期性.doc》由会员分享,可在线阅读,更多相关《2016年高考-文数热点题型和提分秘籍专栏材料05函数的单调性最值奇偶性与周期性.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、*.【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义2.会运用函数的图象理解和研究函数的性质3.结合具体函数,了解函数奇偶性的含义4.会运用函数的图象理解和研究函数的奇偶性【热点题型】题型一 函数单调性的判断例1、(1)下列函数f(x)中,满足“x1,x2(0,)且x1x2,(x1x2)f(x1)f(x2)0”的是()Af(x)2x Bf(x)|x1|Cf(x)x Df(x)ln(x1)(2)函数y在(1,)上是_(填“增函数”或“减函数”)解析(1)由(x1x2) f(x1)f(x2)0可知,f(x)在(0,)是减函数,f(x)x求导,f(x)10,f(x)x在(0,)是减函
2、数(2)任取x1,x2(1,),且x11,x21,x110,x210,又x10,0,即y1y20.y1y2,所以函数y在(1,)上是减函数答案(1)C(2)减函数【提分秘籍】(1)图象法(2)转化法(3)导数法(4)定义法求函数的单调区间,一定要注意定义域优先原则【举一反三】 下列函数中,在区间(0,)上为增函数的是()AyBy(x1)2Cy2x Dylog0.5(x1)题型二 求函数的单调区间例2、求下列函数的单调区间:(1)yx22|x|1;(2)ylog(x23x2)解析(1)由于y即y画出函数图象如图所示,单调递增区间为(,1和0,1,单调递减区间为1,0和1,) (2)令ux23x2
3、,则原函数可以看作ylogu与ux23x2的复合函数令ux23x20,则x2.函数ylog(x23x2)的定义域为(,1)(2,)又ux23x2的对称轴x,且开口向上ux23x2在(,1)上是单调减函数,在(2,)上是单调增函数而ylogu在(0,)上是单调减函数,ylog(x23x2)的单调减区间为(2,),单调增区间为(,1)【提分秘籍】 (1)求函数的单调区间与确定单调性的方法一致常用的方法有: 利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间 定义法:先求定义域,再利用单调性定义确定单调区间 图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图
4、象的直观性写出它的单调区间 导数法:利用导数取值的正负确定函数的单调区间 (2)若函数f(x)的定义域上(或某一区间上)是增函数,则f(x1)f(x2)x10且a1);(2)ylog(4xx2)题型三 函数单调性的应用 例3、已知函数f(x)满足f(x)f(x),且当x时,f(x)exsin x,则()Af(1)f(2)f(3) Bf(2)f(3)f(1)Cf(3)f(2)f(1) Df(3)f(1)0恒成立,所以f(x)在上为增函数,f(2)f(2),f(3)f(3),且0312,所以f(3)f(1)f(2),即f(3)f(1)f(h(x)的形式,然后根据函数的单调性去掉“f”号,转化为具体
5、的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接. 【举一反三】 已知函数f(x)的定义域是(0,),且满足f(xy)f(x)f(y),f1,如果对于0xf(y)(1)求f(1)的值;(2)解不等式f(x)f(3x)2.解析:(1)令xy1,则f(1)f(1)f(1),f(1)0.(2)由题意知f(x)为(0,)上的减函数,且x0,f(xy)f(x)f(y),x、y(0,)且f1.f(x)f(3x)2可化为f(x)f(3x)2f,即f(
6、x)ff(3x)f0f(1)fff(1)ff(1),则解得1x0.不等式的解集为x|1x0时,x0,f(x)x2x, f(x)(x)2xx2x (x2x)f(x);当x0,f(x)x2x, f(x)(x)2x x2x (x2x) f(x)所以对于x(,0)(0,),均有f(x)f(x) 函数为奇函数(2)若f(x)是奇函数,则对任意的xR,均有f(x)f(x),即|f(x)|f(x)|f(x)|,所以y|f(x)|是偶函数,即y|f(x)|的图象关于y轴对称反过来,若y|f(x)|的图象关于y轴对称,则不能得出yf(x)一定是奇函数,比如y|x2|,显然,其图象关于y轴对称,但是yx2是偶函数
7、故“y|f(x)|的图象关于y轴对称”是“yf(x)是奇函数”的必要而不充分条件 答案(1)(2)B【提分秘籍】(1)判定函数奇偶性的常用方法及思路: 定义法:图象法:性质法:a.“奇奇”是奇,“奇奇”是奇,“奇奇”是偶,“奇奇”是偶;b“偶偶”是偶,“偶偶”是偶,“偶偶”是偶,“偶偶”是偶;c“奇偶”是奇,“奇偶”是奇(2)判断函数奇偶性时应注意问题: 分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应的解析式,判断f(x)与f(x)的关系,得出结论,也可以利用图象作判断 “性质法”中的结论是在两个函数的公共定义域内才成立的 性质法在小题中可直接运用,
8、但在解答题中应给出性质推导的过程【举一反三】 设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()Af(x)g(x)是偶函数B|f(x)|g(x)是奇函数Cf(x)|g(x)|是奇函数 D|f(x)g(x)|是奇函数 解析:由题意可知f(x)f(x),g(x)g(x),对于选项A,f(x)g(x)f(x)g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(x)|g(x)|f(x)|g(x)|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(x)|g(x)|f(x)|g(x)|,所以f(x)|g(
9、x)|是奇函数,故C项正确;对于选项D,|f(x)g(x)|f(x)g(x)|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C. 答案:C题型五 函数的周期性 例5、已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)f(x1),若f(2)2,则f(2 014)的值为()A2 B0C2 D2 解析g(x)f(x1),g(x)f(x1)又g(x)f(x1),f(x1)f(x1), f(x2)f(x),f(x4)f(x2)f(x),则f(x)是以4为周期的周期函数,所以f(2 014)f(2)2. 答案A【提分秘籍】 函数周期性的判断要结合周期性的定义,还可以利
10、用图象法及总结的几个结论,如f(xa)f(x)T2a.【举一反三】 函数f(x)lg|sin x|是()A最小正周期为的奇函数B最小正周期为2的奇函数C最小正周期为的偶函数D最小正周期为2的偶函数 解析:易知函数的定义域为x|xk,kZ,关于原点对称,又f(x)lg|sin(x)|lg|sin x|lg|sin x|f(x),所以f(x)是偶函数,又函数y|sin x|的最小正周期为,所以函数f(x)lg|sin x|是最小正周期为的偶函数 答案:C题型六 函数奇偶性、周期性等性质的综合应用 例6、设定义在R上的函数f(x)同时满足以下条件:f(x)f(x)0;f(x)f(x2);当0x1时,
11、f(x)2x1,则ff(1)ff(2)f_.解析:依题意知:函数f(x)为奇函数且周期为2,ff(1)ff(2)fff(1)ff(0)fff(1)ff(0)fff(1)f(0)21211201.答案:【提分秘籍】1.函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主归纳起来常见的命题角度有: (1)求函数值 (2)与函数图象有关的问题 (3)奇偶性、周期性单调性的综合2.应用函数奇偶性可解决的问题及方法 (1)已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值
12、求解 (2)已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式 (3)已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f(x)f(x)0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解 (4)应用奇偶性画图象和判断单调性.【举一反三】 设函数f(x)是定义在R上的偶函数,且对任意的xR恒有f(x1)f(x1),已知当x0,1时,f(x)1x,则下列命题:2是函数f(x)的周期;函数f(x)在(1,2)上递减,在(2,3)上递增;函数f(x)的最大值是1,最小值是0;
13、当x(3,4)时,f(x)x3.其中正确命题的序号是_【高考风向标】1.【2015高考四川,文15】已知函数f(x)2x,g(x)x2ax(其中aR).对于不相等的实数x1,x2,设m,n,现有如下命题:对于任意不相等的实数x1,x2,都有m0; 对于任意的a及任意不相等的实数x1,x2,都有n0;对于任意的a,存在不相等的实数x1,x2,使得mn;对于任意的a,存在不相等的实数x1,x2,使得mn.其中真命题有_(写出所有真命题的序号).【答案】【解析】对于,因为f (x)2xln20恒成立,故正确对于,取a8,即g(x)2x8,当x1,x24时n0,错误对于,令f (x)g(x),即2xl
14、n22xa记h(x)2xln22x,则h(x)2x(ln2)22存在x0(0,1),使得h(x0)0,可知函数h(x)先减后增,有最小值.因此,对任意的a,mn不一定成立.错误对于,由f (x)g(x),即2xln22xa令h(x)2xln22x,则h(x)2x(ln2)220恒成立,即h(x)是单调递增函数,当x时,h(x)当x时,h(x)因此对任意的a,存在ya与函数h(x)有交点.正确2.【2015高考陕西,文10】设,若,则下列关系式中正确的是( )A B C D【答案】【解析】;因为,由是个递增函数,所以,故答案选C3.【2015高考浙江,文12】已知函数,则 ,的最小值是 【答案】
15、4.【2015高考上海,文20】(本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数,其中为实数. (1)根据的不同取值,判断函数的奇偶性,并说明理由;(2)若,判断函数在上的单调性,并说明理由.【答案】(1)是非奇非偶函数;(2)函数在上单调递增.1(2014北京卷)下列函数中,定义域是R且为增函数的是()Ayex Byx3Cyln x Dy|x|【答案】B【解析】由定义域为R,排除选项C,由函数单调递增,排除选项A,D.2(2014湖南卷)下列函数中,既是偶函数又在区间(,0)上单调递增的是()Af(x) Bf(x)x21Cf(x)x3 Df(x)2x【答案】A【解析】由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年高 热点 热门 题型 以及 秘籍 专栏 材料 05 函数 调性 奇偶性 周期性
限制150内