2020新亮剑高考物理总复习讲义:第四单元 曲线运动 万有引力与航天 课时3 .docx





《2020新亮剑高考物理总复习讲义:第四单元 曲线运动 万有引力与航天 课时3 .docx》由会员分享,可在线阅读,更多相关《2020新亮剑高考物理总复习讲义:第四单元 曲线运动 万有引力与航天 课时3 .docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四单元曲线运动万有引力与航天课时3圆 周 运 动见自学听讲P621.圆周运动 (1)描述圆周运动的物理量(2)圆周运动各物理量间的关系1.(2018吉林长春开学考试)(多选)一质点做匀速圆周运动,其线速度大小为4 m/s,转动周期为2 s,则其()。A.角速度为0.5 rad/sB.转速为0.5 r/sC.轨迹半径为4 mD.加速度大小为4 m/s2答案BCD2.(2018广西南宁10月联考)(多选)下列关于做匀速圆周运动的物体所受向心力的说法正确的是()。A.因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力B.因向心力指向圆心,且与线速度方向垂直,所以它不能改变线速度的大小C.向
2、心力就是物体所受的合外力D.向心力和向心加速度的方向都是不变的答案BC3.(2018四川德阳10月月考)(多选)在如图所示的齿轮传动中,三个齿轮的半径之比为236,当齿轮转动的时候,下列关于小齿轮边缘的A点和大齿轮边缘的B点的说法正确的是()。A.A点和B点的线速度大小之比为11B.A点和B点的角速度之比为11C.A点和B点的角速度之比为31D.以上三个选项只有一个是正确的答案AC2.离心运动与近心运动 (1)离心运动(2)近心运动当提供向心力的合力大于做圆周运动所需向心力,即Fm2r时,物体将逐渐靠近圆心,做近心运动。4.(2018江西上饶11月模拟)如图所示,光滑水平面上,小球m在拉力F作
3、用下做匀速圆周运动。若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法正确的是()。A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc运动答案A1.(2018江苏卷,6)(多选)火车以 60 m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在 10 s内匀速转过了约 10。在此10 s时间内,火车()(取3.14)。A.运动路程为 600 mB.加速度为零C.角速度约为 1 rad/sD.转弯半径约为 3.4 km解析圆周运动的弧长s=vt=6010 m
4、=600 m,A项正确;火车转弯是圆周运动,圆周运动是变速运动,所以合力不为零,加速度不为零,B项错误;由题意得圆周运动的角速度=t=10180103.14 rad/s=3.14180 rad/s,又r=v=603.14180 m3439 m,C项错误,D项正确。 答案AD2.(2018浙江卷,4)A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是43,运动方向改变的角度之比是32,则它们()。A.线速度大小之比为43B.角速度大小之比为34C.圆周运动的半径之比为21D.向心加速度大小之比为12解析因为相同时间内它们通过的路程之比是43,则线速度大小之比为43;
5、A项正确;运动方向改变的角度之比为32,则角速度大小之比为32,B项错误;根据v=r得,圆周运动的半径之比为89,C项错误;根据a=v得,向心加速度之比为21,D项错误。答案A见自学听讲P63一圆周运动的运动学问题传动类型图示结论共轴传动(1)运动特点:转动方向相同(2)定量关系:A点和B点转动的周期相同、角速度相同,A点和B点的线速度大小与其半径成正比(续表)传动类型图示结论皮带(链条)传动(1)运动特点:两轮的转动方向与皮带的绕行方式有关,可同向转动,也可反向转动(2)定量关系:由于A、B两点相当于皮带上的不同位置的点,所以它们的线速度大小相同,二者角速度与其半径成反比,周期与其半径成正比
6、(续表)传动类型图示结论齿轮传动(1)运动特点:转动方向相反(2)定量关系:vA=vB,TATB=r1r2=z1z2,AB=r2r1=z2z1(z1、z2分别表示两齿轮的齿数)例1如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转动轴上,其半径之比RBRC=32,A轮的半径大小与C轮的相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来。a、b、c为三轮边缘上的三个点,则a、b、c三点在运动过程中的()。A.线速度大小之比为322B.角速度之比为332C.转速之比为232D.向心加速度大小之比为964解析A、B靠摩擦传动,则边缘上a、b两
7、点的线速度大小相等,即vavb=11,A项错误;B、C同轴转动,则边缘上b、c两点的角速度相等,即b=c,转速之比nbnc=bc=11,B、C两项错误;对a、b两点,由an=v2r得aaab=RbRa=32,对b、c两点,由an=2r得abac=RbRc=32,故aaabac=964,D项正确。答案D传动装置的特点(1)共轴传动:固定在一起共轴传动的物体上各点角速度相同。(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等。二圆周运动的动力学问题1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力
8、或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。2.几种典型运动模型及特点运动模型飞机水平转弯火车转弯圆锥摆向心力的来源图示运动模型飞车走壁汽车在水平路面转弯水平转台向心力的来源图示3.圆周运动问题解决方法例2如图所示,是马戏团中上演的飞车节目,在竖直平面内有半径为R的圆轨道。表演者骑着摩托车在圆轨道内做圆周运动。已知人和摩托车的总质量为m,人以v1=2gR的速度通过轨道最高点B,并以v2=3v1 的速度通过最低点A。则在A、B两点轨道对摩托车的压力大小相差()。A.3mgB.4mgC.5mgD.6mg解析由题意可知,在B点,有FB+mg=mv12R,解得FB=mg;在A点,有FA
9、-mg=mv22R,解得FA=7mg,所以A、B两点轨道对车的压力大小相差6mg,D项正确。答案D解答此类问题的关键:(1)确定做圆周运动的物体所处的平面(水平面);(2)准确分析向心力的来源及方向(水平指向圆心);(3)求出轨道半径;(4)列出动力学方程求解。三水平面内匀速圆周运动的临界问题1.水平面内匀速圆周运动的临界问题关于水平面内的匀速圆周运动的临界问题,主要是临界速度和临界力的问题。常见的是与绳的拉力、弹簧的拉力、接触面的弹力和摩擦力等相关的问题。通过受力分析来确定临界状态和临界条件,是较常用的解题方法。2.处理临界问题的解题步骤(1)判断临界状态有些题目中有“刚好”“恰好”“正好”
10、等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往是临界状态。(2)确定临界条件判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来。(3)选择物理规律当确定了物体运动的临界状态和临界条件后,要分别对于不同的运动过程或现象,选择相对应的物理规律,然后再列方程求解。例3(多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO的距离为l,
11、b与转轴的距离为2l。木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。若圆盘从静止开始绕转轴缓慢地加速转动,用表示圆盘转动的角速度,下列说法正确的是()。A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.= kg2l是b开始滑动的临界角速度D.当= 2kg3l时,a所受摩擦力的大小为kmg解析因圆盘从静止开始绕转轴缓慢加速转动,在某一时刻可认为,木块随圆盘转动时,其受到的静摩擦力的方向指向转轴,两木块在转动过程中角速度相等,则根据牛顿第二定律可得f=m2R,由于小木块b的轨道半径大于a的轨道半径,故b做圆周运动需要的向心力较大,B项错误;因为两小木块的最大静摩擦力相等
12、,故b一定比a先开始滑动,A项正确;当b开始滑动时,由牛顿第二定律可得kmg=mb22l,解得b= kg2l,C项正确;当a开始滑动时,由牛顿第二定律可得kmg=ma2l,解得a= kgl,而当转盘的角速度=2kg3l时,小于kgl,小木块a未发生滑动,其所需的向心力由静摩擦力来提供,由牛顿第二定律可得f=m2l=23kmg,D项错误。答案AC水平面内圆周运动临界问题的分析技巧(1)在水平面内做圆周运动的物体,当角速度变化时,物体有远离或向着圆心运动的趋势(半径没有变化)。这时要根据物体的受力情况,判断某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。(2)三
13、种临界情况接触与脱离的临界条件:两物体相接触或脱离,临界条件为弹力FN=0。相对滑动的临界条件为两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件为静摩擦力达到最大值。绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件为T=0。变式1如图所示,半径为l4、质量为m的小球用两根不可伸长的轻绳a、b连接,两轻绳的另一端系在一根竖直杆的A、B两点上,A、B两点相距为l,当两轻绳伸直后,A、B两点到球心的距离均为l。当竖直杆以自己为轴带动小球一起转动并达到稳定时(轻绳a、b与杆在同一竖直平面内),求:(
14、1)竖直杆角速度为多大时,小球恰好离开竖直杆?(2)求轻绳a的张力Fa与竖直杆转动的角速度之间的关系。解析 (1)小球恰好离开竖直杆时,小球与竖直杆间的作用力为零,设此时轻绳a与竖直杆间的夹角为,由题意可知sin =14,r=l4水平方向有Fasin =m2r竖直半径方向有Facos =mg联立解得=2 g15l。(2)由(1)可知02 g15l时,Fa=415mg若角速度再增大,小球将离开竖直杆,在轻绳b恰好伸直前,设轻绳a与竖直杆的夹角为,此时小球做圆周运动的半径r=lsin 水平方向有Fasin =m2r竖直半径方向有Facos =mg联立解得Fa=m2l当轻绳b恰好伸直时,=60此时=
15、 2gl故有Fa=m2l,此时2 g15l 2gl。答案(1)2 g15l(2)02g15l时,Fa=415mg;2g15l2gl时,Fa=12ml2+mg四竖直平面内圆周运动临界问题1.两类模型比较模型绳球模型杆球模型模型说明用线或光滑圆形轨道内侧束缚的小球在竖直面内绕固定点做圆周运动用杆或环形管内光滑轨道束缚的小球在竖直面内的圆周运动模型图示最高点无支撑最高点有支撑最高点受力特征重力、弹力,弹力方向向下或等于零重力、弹力,弹力方向向下、等于零或向上受力示意图力学特征mg+FN=mv2rmgFN=mv2r临界特征FN=0,vmin=gr竖直向上的FN=mg,v=0在最高点的FN-v2图象取竖
16、直向下为正方向取竖直向下为正方向过最高点条件vgrv0(续表)模型绳球模型杆球模型速度和弹力关系讨论分析能过最高点时,vgr,FN+mg=mv2r,绳、轨道对球产生弹力FN不能过最高点时,vgr,在到达最高点前小球已经脱离了圆轨道做斜抛运动当v=0时,FN=mg,FN为支持力,沿半径背离圆心当0vgr时,FN+mg=mv2r,FN指向圆心并随v的增大而增大2.分析思路类型1绳球模型 例4如图甲所示,一质量m=0.5 kg的小球,用长为0.4 m的轻绳拴着,在竖直平面内做圆周运动。重力加速度g取10 m/s2,问:(1)小球要做完整的圆周运动,在最高点的速度至少为多大?(2)当小球在最高点的速度
17、为4 m/s时,轻绳拉力多大?(3)若轻绳能承受的最大张力为45 N,小球的速度不能超过多大?解析(1)在最高点,对小球受力分析如图乙所示,由牛顿第二定律有mg+F1=mv2R由于轻绳对小球只能提供指向圆心的拉力,即F10联立解得vgR代入数值得v2 m/s所以,小球要做完整的圆周运动,在最高点的速度至少为2 m/s。(2)将v2=4 m/s代入mg+F2=mv22R得,F2=15 N。(3)由分析可知,小球在最低点时轻绳张力最大,对小球受力分析如图丙,由牛顿第二定律有F3-mg=mv32R将F3=45 N代入解得v3=42 m/s即小球的速度不能超过42 m/s。答案(1)2 m/s(2)1
18、5 N(3)42 m/s变式2如图甲所示,小球用不可伸长的轻绳连接后绕固定点O在竖直面内做圆周运动,小球经过最高点时的速度大小为v,此时绳子的拉力大小为FT,拉力FT与速度的平方v2的关系如图乙所示,图象中的数据a和b包括重力加速度g都为已知量,以下说法正确的是()。A.数据a与小球的质量有关B.数据b与圆周轨道半径有关C.比值ba只与小球的质量有关,与圆周轨道半径无关D.利用数据a、b和g能够求出小球的质量和圆周轨道半径解析在最高点对小球受力分析,由牛顿第二定律有FT+mg=mv2R,可得图线的函数表达式为FT=mv2R-mg,题图乙中横轴截距为a,则有0=maR-mg,得g=aR,则a=g
19、R;图线过点(2a,b),则b=m2aR-mg,可得b=mg,则ba=mR,A、B、C三项错误。由b=mg得m=bg,由a=gR得R=ag,D项正确。答案D类型2杆球模型 例5(多选)如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。小球运动到最高点时,受到的弹力为F,速度大小为v,其F-v2图象如图乙所示,则()。A.小球的质量为aRbB.当地的重力加速度大小为RbC.v2=c时,小球对杆的弹力方向向下D.v2=2b时,小球受到的弹力与重力大小相等解析由图乙可知,当v2=b时,杆对球的弹力恰好为零,此时只受重力,重力提供向心力,mg=mv2R=mbR
20、,即重力加速度g=bR,B项错误;当v2=0时,向心力为零,杆对球的弹力恰好与球的重力等大反向,F弹=mg=a,即小球的质量m=ag=aRb,A项正确;根据圆周运动的规律,当v2=b时杆对球的弹力为零,当v2b时,mg+F弹=mv2R,杆对球的弹力方向向下,v2=cb,杆对小球的弹力方向向下,根据牛顿第三定律可知,小球对杆的弹力方向向上,C项错误;当v2=2b时,mg+F弹=mv2R=m2bR,又g=bR,F弹=m2bR-mg=mg,D项正确。答案AD圆周运动与平抛运动的综合问题 圆周运动与平抛运动的组合类问题是近几年高考特别关注的问题,按题目类型可分为水平面内的圆周运动与平抛运动组合、竖直平
21、面内的圆周运动与平抛运动的组合两类,圆周运动与平抛运动的过渡处的速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度。例6如图所示,水平放置的正方形光滑玻璃板abcd,边长为L,距地面的高度为H,玻璃板正中间有一个光滑的小孔O,一根细线穿过小孔,两端分别系着小球A和小物块B,当小球A以速度v在玻璃板上绕O点做匀速圆周运动时,AO间的距离为r。已知A的质量为mA,重力加速度为g。(1)求小物块B的质量mB。(2)当小球速度方向平行于玻璃板ad边时,剪断细线,则小球落地前瞬间的速度多大?(3)在(2)的情况下,若小球和物体落地后均不再运动,则两者落地点间的距离为多少?解析(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020新亮剑高考物理总复习讲义:第四单元 曲线运动 万有引力与航天 课时3 2020 新亮剑 高考 物理 复习 讲义 第四 单元 万有引力 航天 课时

限制150内