2018_2019学年九年级数学上册第二章一元二次方程2.4用因式分解法求解一元二次方程教案.doc
《2018_2019学年九年级数学上册第二章一元二次方程2.4用因式分解法求解一元二次方程教案.doc》由会员分享,可在线阅读,更多相关《2018_2019学年九年级数学上册第二章一元二次方程2.4用因式分解法求解一元二次方程教案.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.4 用因式分解法求解一元二次方程教学目标【知识与技能】能灵活运用直接开平方法、配方法、公式法及因式分解法解一元二次方程.能够根据一元二次方程的结构特点,灵活选用简单的方法.【过程与方法】通过比较、分析、综合,培养学生分析问题解决问题的能力.【情感态度】通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题、解决问题,树立转化的思想方法.【教学重点】用因式分解法解一元二次方程.【教学难点】理解因式分解法解一元二次方程的基本思想.教学过程一、情境导入,初步认识复习:将下列各式分解因式(1)5x2-4x;(2)x2-4x+4;(3)4x(x-1)-2+2x;(4)x2-4;(5)(2x-1)
2、2-x2.【教学说明】通过复习相关知识,有利于学生熟练正确地将多项式因式分解,从而有利地降低本节的难度.二、思考探究,获取新知一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?板演小颖、小明和小亮的三种解法引出分解因式的方法求一元二次方程.当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就可以用小亮的方法求解,这种方法解一元二次方程的方法称为分解因式法.【教学说明】在学生解决问题的基础上引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据.三、运用新知,深化理解1.解方程5x24x.解:原方程可变形x(5x-4)0第一
3、步x0或5x-40第二步x1=0,x2=4/5.【教学说明】教师提问、板书,学生回答.分析步骤(一)第一步变形的方法是“因式分解”,第二步变形的理论根据是“如果两个因式的积等于零,那么至少有一个因式等于零”.分析步骤(二)对于一元二次方程,一边是零,而另一边易于分解成两个一次式时,可以得到两个一元一次方程,这两个一元一次方程的解就是原一元二次方程的解.用此种方法解一元二次方程叫做因式分解法.由第一步到第二步实现了由二次向一次的“转化”,达到了“降次”的目的,解高次方程常用转化的思想方法.2.用因式分解法解下列方程:(1)5x2+3x0;(2)7x(3-x)4(x-3);(3)9(x-2)24(
4、x+1)2.分析:(1)左边x(5x+3),右边0;(2)先把右边化为0,即7x(3-x)-4(x-3)0,找出(3-x)与(x-3)的关系;(3)应用平方差公式.解:(1)因式分解,得x(5x+3)0,于是得x0或5x+30,x10,x2-3/5;(2)原方程化为7x(3-x)-4(x-3)0,因式分解,得(x-3)(-7x-4)0,于是得x-30或-7x-40,x13,x2-4/7;(3)原方程化为9(x-2)2-4(x+1)20,因式分解,得3(x-2)+2(x+1)3(x-2)-2(x+1)0,即(5x-4)(x-8)0,于是得5x-40或x-80,x14/5,x28.【教学说明】(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 _2019 学年 九年级 数学 上册 第二 一元 二次方程 2.4 因式 解法 求解 教案
链接地址:https://www.taowenge.com/p-2737300.html
限制150内