Materials-Studio-培训教程-1(包你学会!).ppt
《Materials-Studio-培训教程-1(包你学会!).ppt》由会员分享,可在线阅读,更多相关《Materials-Studio-培训教程-1(包你学会!).ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目的: 介绍如何使用 DMol3 和 Reaction Preview 工具进行过渡态搜索的计算。 对简 单反应,这种方法是有效的。模块: Materials Visualizer, DMol3前提: 用局域内坐标对固体进行结构优化。用LST/QST 搜索过渡态背景 对任何反应的势能面的探索都要求知道反应进程中每一步的结构和能量,或者动力学和热动力学的快照(snapshots)。特别重要的是决定反应速率的那一步,这通常需要找到那些难以捕获的过渡态结构。有一些方法对找到过渡态的结构是很有效果的,其中比较知名的就是线性同步度越(linear synchronous transit, LST)和二次
2、同步度越(quadratic synchronous transit,QST)。 本例中,我们将介绍DMol 中的LST /QST 工具的使用,将会看到如何使用LST/QST 搜索乙烯醇转变为乙醛的H转移反应 的过渡态结构。CH2CHOH CH3CHO本例包括以下内容: 1. 建立一个计算模型 2. 优化分子结构 3.定义原子对 4.用LST/QST 的方法计算过渡态 5.优化过渡态结构结构1.建立一个计算模型选择 creating a new project,建立名为vinylOH 的project 。 在本单元中,你要在两个不同的3D Atomistic 界面中建立反应物和产物模型。第一步
3、就是打开一个新的3D Atomistic界面,构建反应物乙烯醇(vinyl alcohol)。点击工具栏里的New button,选择3D Atomistic。在Sketch 工具条上,点击Sketch Atom 按钮 。 将鼠标移至3D Atomistic界面,连续点击三次鼠标,画三个连接的碳原子。按一下键盘上的ESC 键。改为球棍显示在3D Atomistic上 ,点击选择第三个C 原子。点击Modify Element 按钮上的选择箭头,选择氧元素。刚才被选的原子由碳原子变成了氧原子。点击碳-碳键一次,选中。点击Sketch工具条上的Modify Bond Type 键 ,选择双键,从而
4、把单键变成双键。点击别处,取消取消选择碳-碳键。按下Adjust Hydrogen 按钮 ,点击一次Clean 按钮 ,拖动结构模型,使得和下图相似,以球棍模型显示。在Project浏览器内,右击3D Atomistic.xsd,选择Rename,将其重新命名为reactant.xsd。在3D Viewer上选择Selection按钮 , 双击乙烯醇结构中的任何一个原子。这样乙烯醇的每一个原子都被选上,颜色显示为黄色。* 在这个新的3D 界面文件中,点击O-H 键。按下键盘上的DELETE 键。点击Sketch Atom 按钮 ,然后是孤立的H 原子,以及亚甲基团中的C 原子。如果画分子有问题
5、,则删除3D Atomistic.xsd上的原子,再进行CTRL+C、CTRL+V。* 在键盘上按下CTRL + C。选中的结构文件被复制到了剪贴板。* 用File / New打开一个新的3D Atomistic 文件,按下键盘上的CTRL + V。* 结构模型被粘贴到刚刚新打开的3D 界面上。现在需要改变化学键和对原子重新排布以得到产物结构。点击一次Clean 按钮 。现在结构就和下面的看上去相似了。点击一次C-O 键,由单键改为双键。连续双击C-C 键,C-C 键就会由双键变为三键,然后又变成单键。现在需要把该结构的文件名改为product.xsd。右击工作浏览器Project内的3D A
6、tomistic.xsd,将其名称改为product.xsd,回车。2. 优化分子结构 为了优化LST/QST的计算性能,需要对反应物和产物的结构进行优化。这个工作可以通过DMol3 的几何优化功能来完成。 点击别处,取消选择结构。按下工具条上的DMol3 按钮 ,然后选择下拉条中的Calculation。DMol3 的计算对话框显示出来。 将Task 由Energy 改为Geometry Optimization。确认Quality 设为Medium。将泛函改为GGA BP。 刚才指定了使用的Hamiltonian 和计算的精度。精度决定了使用的基组(basis set)和轨道的截断cuto
7、ff。这里基组为DND。可以在Electronic 栏里检查这些参数的设置。现在需要应用电子分布热平滑thermal smearing来加快结构优化的收敛。 点击Electronic 标签。检查SCF 是不是设为Medium。按下More按钮,显示了DMol3 的Electronic 选项对话框。在SCF 标签栏里,勾选上Using smearing 选项。关闭DMol3 Electronic选项对话框。 现在准备开始计算了。现在准备开始计算了。 让让reactant.xsd 成为当前工作文件。点击成为当前工作文件。点击Job Control 标签。按下标签。按下More按钮,按钮,显示了显示
8、了DMol3的工作控制选项对话框。确认的工作控制选项对话框。确认Update structure,Update graphs 和和Update textual results 三项被勾选上。关闭三项被勾选上。关闭Job Control 选项对话框,点击选项对话框,点击Run 按钮。按钮。当第一个计算结束后,对product.xsd 重复刚才的操作。把当前工作文件换为product.xsd,点击DMol3 计算对话框上的Run 按钮。计算过程中,计算的进程用图表和文本文件的形式展现出来。 当两个计算都完成的时候,两个新的文件夹出现在工作浏览器中,分别叫做reactant DMol3 GeomOp
9、t 和product DMol3 GeomOpt。最后的优化结构包含在reactant.xsd 和product.xsd 文件中,计算的输出结果在reactant.outmol 和product.outmol 文件中。 几何优化文件夹包含了.xtd 文件,这是能量最小化过程中的轨迹文件,可以显示几何优化过程。下面演示反应物的结构优化过程。从reactant Energies.xcd图中可以看出,反应物经过12步才优化结束,我们可以看到每一步结构的变化。在Project中双击reactant.xtd文件,动画显示工具按钮Animation 激活。 如果动画(Animation)工具条 是不可见的
10、,则按右侧的操作,使用观看(View)菜单让它显示。设置显示方式,按播放键 。B-O近似,体系的电子能量是核构型的函数。在继续工作之前,需要关闭Materials Visualizer 中的所有文件。关闭DMol3 计算对话框。选择FileSave Project,然后WindowClose All。双击几何优化子文件夹中的reactant.xsd 和product.xsd。现在工作区域中只有两个优化了的结构。3. 定义原子对 用DMol3 进行过渡态搜索,反应物和产物的所有原子都必须配对对应。这个可以通过使用工具栏里的反应预览(Reaction Preview)功能来实现。 从菜单条中选择W
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Materials Studio 培训 教程 学会
限制150内