stata命令资料大全(全).doc
《stata命令资料大全(全).doc》由会员分享,可在线阅读,更多相关《stata命令资料大全(全).doc(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、/* 面板数据计量分析与软件实现 *说明:以下do文件相当一部分内容来自于中山大学连玉君STATA教程,感谢他的贡献。本人做了一定的修改与筛选。 *-面板数据模型 * 1.静态面板模型:FE 和RE * 2.模型选择:FE vs POLS, RE vs POLS, FE vs RE (pols混合最小二乘估计) * 3.异方差、序列相关和截面相关检验 * 4.动态面板模型(DID-GMM,SYS-GMM) * 5.面板随机前沿模型 * 6.面板协整分析(FMOLS,DOLS)* 说明:1-5均用STATA软件实现, 6用GAUSS软件实现。 * 生产效率分析(尤其指TFP):数据包络分析(DE
2、A)与随机前沿分析(SFA)* 说明:DEA由DEAP2.1软件实现,SFA由Frontier4.1实现,尤其后者,侧重于比较C-D与Translog生产函数,一步法与两步法的区别。常应用于地区经济差异、FDI溢出效应(Spillovers Effect)、工业行业效率状况等。 * 空间计量分析:SLM模型与SEM模型*说明:STATA与Matlab结合使用。常应用于空间溢出效应(R&D)、财政分权、地方政府公共行为等。* -* - 一、常用的数据处理与作图 -* -* 指定面板格式xtset id year (id为截面名称,year为时间名称) xtdes /*数据特征*/xtsum lo
3、gy h /*数据统计特征*/sum logy h /*数据统计特征*/*添加标签或更改变量名label var h 人力资本rename h hum*排序sort id year /*是以STATA面板数据格式出现*/sort year id /*是以DEA格式出现*/*删除个别年份或省份drop if year宽数据reshape wide logy,i(id) j(year)*宽长数据reshape logy,i(id) j(year)*追加数据(用于面板数据和时间序列)xtset id year *或者 xtdestsappend,add(5) /表示在每个省份再追加5年,用于面板数据
4、/tsset *或者 tsdes.tsappend,add(8) /表示追加8年,用于时间序列/*方差分解,比如三个变量Y,X,Z都是面板格式的数据,且满足Y=X+Z,求方差var(Y),协方差Cov(X,Y)和Cov(Z,Y)bysort year:corr Y X Z,cov*生产虚拟变量*生成年份虚拟变量tab year,gen(yr)*生成省份虚拟变量tab id,gen(dum)*生成滞后项和差分项xtset id yeargen ylag=l.y /*产生一阶滞后项),同样可产生二阶滞后项*/gen ylag2=L2.y gen dy=D.y /*产生差分项*/*求出各省2000年
5、以前的open inv的平均增长率collapse (mean) open inv if year2000,by(id)变量排序,当变量太多,按规律排列。可用命令aorder或者order fdi open insti*-* 二、静态面板模型*-*- 简介 -* 面板数据的结构(兼具截面资料和时间序列资料的特征) use product.dta, clear browse xtset id year xtdes* -* - 固定效应模型 -* -* 实质上就是在传统的线性回归模型中加入 N-1 个虚拟变量,* 使得每个截面都有自己的截距项,* 截距项的不同反映了个体的某些不随时间改变的特征*
6、* 例如: lny = a_i + b1*lnK + b2*lnL + e_it* 考虑中国29个省份的C-D生产函数*-画图-*散点图+线性拟合直线twoway (scatter logy h) (lfit logy h)*散点图+二次拟合曲线twoway (scatter logy h) (qfit logy h)*散点图+线性拟合直线+置信区间twoway (scatter logy h) (lfit logy h) (lfitci logy h)*按不同个体画出散点图和拟合线,可以以做出fe vs re的初判断* twoway (scatter logy h if id4) (lfit
7、 logy h if id4) (lfit logy h if id=1) (lfit logy h if id=2) (lfit logy h if id=3)*按不同个体画散点图,so beautiful!*graph twoway scatter logy h if id=1 | scatter logy h if id=2,msymbol(Sh) | scatter logy h if id=3,msymbol(T) | scatter logy h if id=4,msymbol(d) | , legend(position(11) ring(0) label(1 北京) label
8、(2 天津) label(3 河北) label(4 山西) *每个省份logy与h的散点图,并将各个图形合并twoway scatter logy h,by(id) ylabel(,format(%3.0f) xlabel(,format(%3.0f)*每个个体的时间趋势图* xtline h if id R-sq: within 模型(2)对应的R2,是一个真正意义上的R2 * - R-sq: between corrxm_i*b_w,ym_i2 * - R-sq: overall corrx_it*b_w,y_it2 * *- F(4,373) = 855.93检验除常数项外其他解释变量
9、的联合显著性 * * *- corr(u_i, Xb) = -0.2347 * *- sigma_u, sigma_e, rho * rho = sigma_u2 / (sigma_u2 + sigma_e2) dis e(sigma_u)2 / (e(sigma_u)2 + e(sigma_e)2) * * 个体效应是否显著? * F(28, 373) = 338.86 H0: a1 = a2 = a3 = a4 = a29 * Prob F = 0.0000 表明,固定效应高度显著 *-如何得到调整后的 R2,即 adj-R2 ?ereturn listreg logy h inv gov
10、 open dum* *-拟合值和残差 * y_it = u_i + x_it*b + e_it * predict newvar, option /* xb xb, fitted values; the default stdp calculate standard error of the fitted values ue u_i + e_it, the combined residual xbu xb + u_i, prediction including effect u u_i, the fixed- or random-error component e e_it, the ove
11、rall error component */ xtreg logy logk logl, fe predict y_hat predict a , u predict res,e predict cres, ue gen ares = a + res list ares cres in 1/10 * -* - 随机效应模型 - * -* y_it = x_it*b + (a_i + u_it)* = x_it*b + v_it * 基本思想:将随机干扰项分成两种* 一种是不随时间改变的,即个体效应 a_i* 另一种是随时间改变的,即通常意义上的干扰项 u_it * 估计方法:FGLS* Va
12、r(v_it) = sigma_a2 + sigma_u2* Cov(v_it,v_is) = sigma_a2* Cov(v_it,v_js) = 0 * 利用Pooled OLS,Within Estimator, Between Estimator* 可以估计出sigma_a2和sigma_u2,进而采用GLS或FGLS* Re估计量是Fe估计量和Be估计量的加权平均* yr_it = y_it - theta*ym_i* xr_it = x_it - theta*xm_i* theta = 1 - sigma_u / sqrt(T*sigma_a2 + sigma_u2) * 解读 x
13、treg,re 的估计结果 use product.dta, clear xtreg logy logk logl, re *- R2 * - R-sq: within corr(x_it-xm_i)*b_r, y_it-ym_i2 * - R-sq: between corrxm_i*b_r,ym_i2 * - R-sq: overall corrx_it*b_r,y_it2 * 上述R2都不是真正意义上的R2,因为Re模型采用的是GLS估计。 * * rho = sigma_u2 / (sigma_u2 + sigma_e2) dis e(sigma_u)2 / (e(sigma_u)2
14、+ e(sigma_e)2) * * corr(u_i, X) = 0 (assumed) * 这是随机效应模型的一个最重要,也限制该模型应用的一个重要假设 * 然而,采用固定效应模型,我们可以粗略估计出corr(u_i, X) xtreg market invest stock, fe * * Wald chi2(2) = 10962.50 Prob chi2 = 0.0000 *- 时间效应、模型的筛选和常见问题 *-目录-* 7.2.1 时间效应(双向固定(随机)效应模型)* 7.2.2 模型的筛选* 7.2.3 面板数据常见问题* 7.2.4 面板数据的转换 * -* -时间效应-*
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- stata 命令 资料 大全
限制150内